This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If one of two locally isomorphic graphs has a triangle, so does the other. The triangle in the other graph is not necessarily the image ( F " T ) of the triangle T in the first graph. (Contributed by AV, 24-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grlimgrtri.g | ⊢ ( 𝜑 → 𝐺 ∈ USPGraph ) | |
| grlimgrtri.h | ⊢ ( 𝜑 → 𝐻 ∈ USPGraph ) | ||
| grlimgrtri.n | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) | ||
| grlimgrtri.t | ⊢ ( 𝜑 → 𝑇 ∈ ( GrTriangles ‘ 𝐺 ) ) | ||
| Assertion | grlimgrtri | ⊢ ( 𝜑 → ∃ 𝑡 𝑡 ∈ ( GrTriangles ‘ 𝐻 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grlimgrtri.g | ⊢ ( 𝜑 → 𝐺 ∈ USPGraph ) | |
| 2 | grlimgrtri.h | ⊢ ( 𝜑 → 𝐻 ∈ USPGraph ) | |
| 3 | grlimgrtri.n | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) | |
| 4 | grlimgrtri.t | ⊢ ( 𝜑 → 𝑇 ∈ ( GrTriangles ‘ 𝐺 ) ) | |
| 5 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 6 | eqid | ⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) | |
| 7 | 5 6 | grtriprop | ⊢ ( 𝑇 ∈ ( GrTriangles ‘ 𝐺 ) → ∃ 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 8 | 4 7 | syl | ⊢ ( 𝜑 → ∃ 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 9 | 1 2 3 | 3jca | ⊢ ( 𝜑 → ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) ) |
| 10 | eqid | ⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 ) | |
| 11 | eqid | ⊢ ( 𝐺 ClNeighbVtx 𝑣 ) = ( 𝐺 ClNeighbVtx 𝑣 ) | |
| 12 | eqid | ⊢ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) = ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) | |
| 13 | eqid | ⊢ ( Edg ‘ 𝐻 ) = ( Edg ‘ 𝐻 ) | |
| 14 | sseq1 | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) ↔ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) ) ) | |
| 15 | 14 | cbvrabv | ⊢ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } = { 𝑥 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } |
| 16 | sseq1 | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ↔ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ) ) | |
| 17 | 16 | cbvrabv | ⊢ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } = { 𝑥 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } |
| 18 | 5 10 11 12 6 13 15 17 | usgrlimprop | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) → ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ) ) ) |
| 19 | eqidd | ⊢ ( 𝑣 = 𝑎 → 𝑓 = 𝑓 ) | |
| 20 | oveq2 | ⊢ ( 𝑣 = 𝑎 → ( 𝐺 ClNeighbVtx 𝑣 ) = ( 𝐺 ClNeighbVtx 𝑎 ) ) | |
| 21 | fveq2 | ⊢ ( 𝑣 = 𝑎 → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑎 ) ) | |
| 22 | 21 | oveq2d | ⊢ ( 𝑣 = 𝑎 → ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) = ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) |
| 23 | 19 20 22 | f1oeq123d | ⊢ ( 𝑣 = 𝑎 → ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ↔ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) ) |
| 24 | eqidd | ⊢ ( 𝑣 = 𝑎 → 𝑔 = 𝑔 ) | |
| 25 | 20 | sseq2d | ⊢ ( 𝑣 = 𝑎 → ( 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) ↔ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) ) ) |
| 26 | 25 | rabbidv | ⊢ ( 𝑣 = 𝑎 → { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } = { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ) |
| 27 | 22 | sseq2d | ⊢ ( 𝑣 = 𝑎 → ( 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ↔ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) ) |
| 28 | 27 | rabbidv | ⊢ ( 𝑣 = 𝑎 → { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } = { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ) |
| 29 | 24 26 28 | f1oeq123d | ⊢ ( 𝑣 = 𝑎 → ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } ↔ 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ) ) |
| 30 | 26 | raleqdv | ⊢ ( 𝑣 = 𝑎 → ( ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ↔ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ) |
| 31 | 29 30 | anbi12d | ⊢ ( 𝑣 = 𝑎 → ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ↔ ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ) ) |
| 32 | 31 | exbidv | ⊢ ( 𝑣 = 𝑎 → ( ∃ 𝑔 ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ↔ ∃ 𝑔 ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ) ) |
| 33 | 23 32 | anbi12d | ⊢ ( 𝑣 = 𝑎 → ( ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ) ↔ ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ) ) ) |
| 34 | 33 | exbidv | ⊢ ( 𝑣 = 𝑎 → ( ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ) ↔ ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ) ) ) |
| 35 | 34 | rspcv | ⊢ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) → ( ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ) → ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ) ) ) |
| 36 | 35 | 3ad2ant1 | ⊢ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) → ( ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ) → ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ) ) ) |
| 37 | 36 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ) → ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ) ) ) |
| 38 | tpex | ⊢ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∈ V | |
| 39 | 38 | a1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) → { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∈ V ) |
| 40 | f1of1 | ⊢ ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) → 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) | |
| 41 | 40 | 3ad2ant2 | ⊢ ( ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) → 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) |
| 42 | 41 | 3ad2ant2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) → 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) |
| 43 | 5 | clnbgrvtxel | ⊢ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) → 𝑎 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) |
| 44 | 43 | 3ad2ant1 | ⊢ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) → 𝑎 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) |
| 45 | 44 | adantr | ⊢ ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → 𝑎 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) |
| 46 | simplr | ⊢ ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ) → 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) | |
| 47 | simpll | ⊢ ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ) → 𝑎 ∈ ( Vtx ‘ 𝐺 ) ) | |
| 48 | simpr | ⊢ ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ) → { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ) | |
| 49 | 5 6 | predgclnbgrel | ⊢ ( ( 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ) → 𝑏 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) |
| 50 | 46 47 48 49 | syl3anc | ⊢ ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ) → 𝑏 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) |
| 51 | 50 | 2a1d | ⊢ ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ) → ( { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) → ( { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) → 𝑏 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) ) ) |
| 52 | 51 | ex | ⊢ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) → ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) → ( { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) → ( { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) → 𝑏 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) ) ) ) |
| 53 | 52 | 3impd | ⊢ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) → ( ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) → 𝑏 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) ) |
| 54 | 53 | 3adant3 | ⊢ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) → ( ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) → 𝑏 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) ) |
| 55 | 54 | imp | ⊢ ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → 𝑏 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) |
| 56 | simplr | ⊢ ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) → 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) | |
| 57 | simpll | ⊢ ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) → 𝑎 ∈ ( Vtx ‘ 𝐺 ) ) | |
| 58 | simpr | ⊢ ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) → { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) | |
| 59 | 5 6 | predgclnbgrel | ⊢ ( ( 𝑐 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) → 𝑐 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) |
| 60 | 56 57 58 59 | syl3anc | ⊢ ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) → 𝑐 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) |
| 61 | 60 | a1d | ⊢ ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) → ( { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) → 𝑐 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) ) |
| 62 | 61 | ex | ⊢ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) → ( { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) → ( { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) → 𝑐 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) ) ) |
| 63 | 62 | a1d | ⊢ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) → ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) → ( { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) → ( { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) → 𝑐 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) ) ) ) |
| 64 | 63 | 3impd | ⊢ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) → ( ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) → 𝑐 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) ) |
| 65 | 64 | 3adant2 | ⊢ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) → ( ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) → 𝑐 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) ) |
| 66 | 65 | imp | ⊢ ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → 𝑐 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) |
| 67 | 45 55 66 | 3jca | ⊢ ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( 𝑎 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ∧ 𝑏 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ∧ 𝑐 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) ) |
| 68 | 67 | ex | ⊢ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) → ( ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) → ( 𝑎 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ∧ 𝑏 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ∧ 𝑐 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) ) ) |
| 69 | 68 | 2a1d | ⊢ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } → ( ( ♯ ‘ 𝑇 ) = 3 → ( ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) → ( 𝑎 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ∧ 𝑏 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ∧ 𝑐 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) ) ) ) ) |
| 70 | 69 | 3impd | ⊢ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) → ( ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( 𝑎 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ∧ 𝑏 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ∧ 𝑐 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) ) ) |
| 71 | 70 | a1d | ⊢ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) → ( ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) → ( ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( 𝑎 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ∧ 𝑏 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ∧ 𝑐 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) ) ) ) |
| 72 | 71 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) → ( ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( 𝑎 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ∧ 𝑏 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ∧ 𝑐 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) ) ) ) |
| 73 | 72 | 3imp | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) → ( 𝑎 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ∧ 𝑏 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ∧ 𝑐 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) ) |
| 74 | 3simpa | ⊢ ( ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) | |
| 75 | 74 | 3ad2ant3 | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) → ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) |
| 76 | 73 75 | jca | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) → ( ( 𝑎 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ∧ 𝑏 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ∧ 𝑐 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) ) |
| 77 | grtrimap | ⊢ ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) → ( ( ( 𝑎 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ∧ 𝑏 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ∧ 𝑐 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) → ( ( ( 𝑓 ‘ 𝑎 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑏 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) ∧ ( 𝑓 “ 𝑇 ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝑓 “ 𝑇 ) ) = 3 ) ) ) | |
| 78 | 42 76 77 | sylc | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) → ( ( ( 𝑓 ‘ 𝑎 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑏 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) ∧ ( 𝑓 “ 𝑇 ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝑓 “ 𝑇 ) ) = 3 ) ) |
| 79 | tpeq1 | ⊢ ( 𝑥 = ( 𝑓 ‘ 𝑎 ) → { 𝑥 , 𝑦 , 𝑧 } = { ( 𝑓 ‘ 𝑎 ) , 𝑦 , 𝑧 } ) | |
| 80 | 79 | eqeq2d | ⊢ ( 𝑥 = ( 𝑓 ‘ 𝑎 ) → ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } = { 𝑥 , 𝑦 , 𝑧 } ↔ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } = { ( 𝑓 ‘ 𝑎 ) , 𝑦 , 𝑧 } ) ) |
| 81 | preq1 | ⊢ ( 𝑥 = ( 𝑓 ‘ 𝑎 ) → { 𝑥 , 𝑦 } = { ( 𝑓 ‘ 𝑎 ) , 𝑦 } ) | |
| 82 | 81 | eleq1d | ⊢ ( 𝑥 = ( 𝑓 ‘ 𝑎 ) → ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ↔ { ( 𝑓 ‘ 𝑎 ) , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ) ) |
| 83 | preq1 | ⊢ ( 𝑥 = ( 𝑓 ‘ 𝑎 ) → { 𝑥 , 𝑧 } = { ( 𝑓 ‘ 𝑎 ) , 𝑧 } ) | |
| 84 | 83 | eleq1d | ⊢ ( 𝑥 = ( 𝑓 ‘ 𝑎 ) → ( { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ↔ { ( 𝑓 ‘ 𝑎 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) |
| 85 | 82 84 | 3anbi12d | ⊢ ( 𝑥 = ( 𝑓 ‘ 𝑎 ) → ( ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ↔ ( { ( 𝑓 ‘ 𝑎 ) , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑎 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) |
| 86 | 80 85 | 3anbi13d | ⊢ ( 𝑥 = ( 𝑓 ‘ 𝑎 ) → ( ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ↔ ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } = { ( 𝑓 ‘ 𝑎 ) , 𝑦 , 𝑧 } ∧ ( ♯ ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ) = 3 ∧ ( { ( 𝑓 ‘ 𝑎 ) , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑎 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) |
| 87 | tpeq2 | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑏 ) → { ( 𝑓 ‘ 𝑎 ) , 𝑦 , 𝑧 } = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , 𝑧 } ) | |
| 88 | 87 | eqeq2d | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑏 ) → ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } = { ( 𝑓 ‘ 𝑎 ) , 𝑦 , 𝑧 } ↔ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , 𝑧 } ) ) |
| 89 | preq2 | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑏 ) → { ( 𝑓 ‘ 𝑎 ) , 𝑦 } = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) | |
| 90 | 89 | eleq1d | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑏 ) → ( { ( 𝑓 ‘ 𝑎 ) , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ↔ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ) ) |
| 91 | preq1 | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑏 ) → { 𝑦 , 𝑧 } = { ( 𝑓 ‘ 𝑏 ) , 𝑧 } ) | |
| 92 | 91 | eleq1d | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑏 ) → ( { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ↔ { ( 𝑓 ‘ 𝑏 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) |
| 93 | 90 92 | 3anbi13d | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑏 ) → ( ( { ( 𝑓 ‘ 𝑎 ) , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑎 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ↔ ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑎 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑏 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) |
| 94 | 88 93 | 3anbi13d | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑏 ) → ( ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } = { ( 𝑓 ‘ 𝑎 ) , 𝑦 , 𝑧 } ∧ ( ♯ ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ) = 3 ∧ ( { ( 𝑓 ‘ 𝑎 ) , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑎 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ↔ ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , 𝑧 } ∧ ( ♯ ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ) = 3 ∧ ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑎 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑏 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) |
| 95 | tpeq3 | ⊢ ( 𝑧 = ( 𝑓 ‘ 𝑐 ) → { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , 𝑧 } = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ) | |
| 96 | 95 | eqeq2d | ⊢ ( 𝑧 = ( 𝑓 ‘ 𝑐 ) → ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , 𝑧 } ↔ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ) ) |
| 97 | preq2 | ⊢ ( 𝑧 = ( 𝑓 ‘ 𝑐 ) → { ( 𝑓 ‘ 𝑎 ) , 𝑧 } = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑐 ) } ) | |
| 98 | 97 | eleq1d | ⊢ ( 𝑧 = ( 𝑓 ‘ 𝑐 ) → ( { ( 𝑓 ‘ 𝑎 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ↔ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) |
| 99 | preq2 | ⊢ ( 𝑧 = ( 𝑓 ‘ 𝑐 ) → { ( 𝑓 ‘ 𝑏 ) , 𝑧 } = { ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ) | |
| 100 | 99 | eleq1d | ⊢ ( 𝑧 = ( 𝑓 ‘ 𝑐 ) → ( { ( 𝑓 ‘ 𝑏 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ↔ { ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) |
| 101 | 98 100 | 3anbi23d | ⊢ ( 𝑧 = ( 𝑓 ‘ 𝑐 ) → ( ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑎 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑏 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ↔ ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) ) |
| 102 | 96 101 | 3anbi13d | ⊢ ( 𝑧 = ( 𝑓 ‘ 𝑐 ) → ( ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , 𝑧 } ∧ ( ♯ ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ) = 3 ∧ ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑎 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑏 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ↔ ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∧ ( ♯ ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ) = 3 ∧ ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) |
| 103 | 10 | clnbgrisvtx | ⊢ ( ( 𝑓 ‘ 𝑎 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) → ( 𝑓 ‘ 𝑎 ) ∈ ( Vtx ‘ 𝐻 ) ) |
| 104 | 103 | 3ad2ant1 | ⊢ ( ( ( 𝑓 ‘ 𝑎 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑏 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) → ( 𝑓 ‘ 𝑎 ) ∈ ( Vtx ‘ 𝐻 ) ) |
| 105 | 104 | 3ad2ant1 | ⊢ ( ( ( ( 𝑓 ‘ 𝑎 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑏 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) ∧ ( 𝑓 “ 𝑇 ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝑓 “ 𝑇 ) ) = 3 ) → ( 𝑓 ‘ 𝑎 ) ∈ ( Vtx ‘ 𝐻 ) ) |
| 106 | 105 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) ∧ ( ( ( 𝑓 ‘ 𝑎 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑏 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) ∧ ( 𝑓 “ 𝑇 ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝑓 “ 𝑇 ) ) = 3 ) ) → ( 𝑓 ‘ 𝑎 ) ∈ ( Vtx ‘ 𝐻 ) ) |
| 107 | 10 | clnbgrisvtx | ⊢ ( ( 𝑓 ‘ 𝑏 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) → ( 𝑓 ‘ 𝑏 ) ∈ ( Vtx ‘ 𝐻 ) ) |
| 108 | 107 | 3ad2ant2 | ⊢ ( ( ( 𝑓 ‘ 𝑎 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑏 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) → ( 𝑓 ‘ 𝑏 ) ∈ ( Vtx ‘ 𝐻 ) ) |
| 109 | 108 | 3ad2ant1 | ⊢ ( ( ( ( 𝑓 ‘ 𝑎 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑏 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) ∧ ( 𝑓 “ 𝑇 ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝑓 “ 𝑇 ) ) = 3 ) → ( 𝑓 ‘ 𝑏 ) ∈ ( Vtx ‘ 𝐻 ) ) |
| 110 | 109 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) ∧ ( ( ( 𝑓 ‘ 𝑎 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑏 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) ∧ ( 𝑓 “ 𝑇 ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝑓 “ 𝑇 ) ) = 3 ) ) → ( 𝑓 ‘ 𝑏 ) ∈ ( Vtx ‘ 𝐻 ) ) |
| 111 | 10 | clnbgrisvtx | ⊢ ( ( 𝑓 ‘ 𝑐 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) → ( 𝑓 ‘ 𝑐 ) ∈ ( Vtx ‘ 𝐻 ) ) |
| 112 | 111 | 3ad2ant3 | ⊢ ( ( ( 𝑓 ‘ 𝑎 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑏 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) → ( 𝑓 ‘ 𝑐 ) ∈ ( Vtx ‘ 𝐻 ) ) |
| 113 | 112 | 3ad2ant1 | ⊢ ( ( ( ( 𝑓 ‘ 𝑎 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑏 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) ∧ ( 𝑓 “ 𝑇 ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝑓 “ 𝑇 ) ) = 3 ) → ( 𝑓 ‘ 𝑐 ) ∈ ( Vtx ‘ 𝐻 ) ) |
| 114 | 113 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) ∧ ( ( ( 𝑓 ‘ 𝑎 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑏 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) ∧ ( 𝑓 “ 𝑇 ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝑓 “ 𝑇 ) ) = 3 ) ) → ( 𝑓 ‘ 𝑐 ) ∈ ( Vtx ‘ 𝐻 ) ) |
| 115 | eqidd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) ∧ ( ( ( 𝑓 ‘ 𝑎 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑏 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) ∧ ( 𝑓 “ 𝑇 ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝑓 “ 𝑇 ) ) = 3 ) ) → { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ) | |
| 116 | fveq2 | ⊢ ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } = ( 𝑓 “ 𝑇 ) → ( ♯ ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ) = ( ♯ ‘ ( 𝑓 “ 𝑇 ) ) ) | |
| 117 | 116 | eqcoms | ⊢ ( ( 𝑓 “ 𝑇 ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } → ( ♯ ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ) = ( ♯ ‘ ( 𝑓 “ 𝑇 ) ) ) |
| 118 | 117 | 3ad2ant2 | ⊢ ( ( ( ( 𝑓 ‘ 𝑎 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑏 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) ∧ ( 𝑓 “ 𝑇 ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝑓 “ 𝑇 ) ) = 3 ) → ( ♯ ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ) = ( ♯ ‘ ( 𝑓 “ 𝑇 ) ) ) |
| 119 | simp3 | ⊢ ( ( ( ( 𝑓 ‘ 𝑎 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑏 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) ∧ ( 𝑓 “ 𝑇 ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝑓 “ 𝑇 ) ) = 3 ) → ( ♯ ‘ ( 𝑓 “ 𝑇 ) ) = 3 ) | |
| 120 | 118 119 | eqtrd | ⊢ ( ( ( ( 𝑓 ‘ 𝑎 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑏 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) ∧ ( 𝑓 “ 𝑇 ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝑓 “ 𝑇 ) ) = 3 ) → ( ♯ ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ) = 3 ) |
| 121 | 120 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) ∧ ( ( ( 𝑓 ‘ 𝑎 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑏 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) ∧ ( 𝑓 “ 𝑇 ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝑓 “ 𝑇 ) ) = 3 ) ) → ( ♯ ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ) = 3 ) |
| 122 | uspgruhgr | ⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph ) | |
| 123 | 1 122 | syl | ⊢ ( 𝜑 → 𝐺 ∈ UHGraph ) |
| 124 | 123 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → 𝐺 ∈ UHGraph ) |
| 125 | simp3 | ⊢ ( ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) | |
| 126 | 124 125 | anim12i | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) → ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 127 | 126 | 3adant2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) → ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 128 | 127 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) ∧ ( ( ( 𝑓 ‘ 𝑎 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑏 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) ∧ ( 𝑓 “ 𝑇 ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝑓 “ 𝑇 ) ) = 3 ) ) → ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 129 | eqid | ⊢ ( 𝐺 ClNeighbVtx 𝑎 ) = ( 𝐺 ClNeighbVtx 𝑎 ) | |
| 130 | eqid | ⊢ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } = { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } | |
| 131 | 5 129 6 130 | grlimgrtrilem1 | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( { 𝑎 , 𝑏 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ∧ { 𝑎 , 𝑐 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ∧ { 𝑏 , 𝑐 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ) ) |
| 132 | 128 131 | syl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) ∧ ( ( ( 𝑓 ‘ 𝑎 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑏 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) ∧ ( 𝑓 “ 𝑇 ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝑓 “ 𝑇 ) ) = 3 ) ) → ( { 𝑎 , 𝑏 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ∧ { 𝑎 , 𝑐 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ∧ { 𝑏 , 𝑐 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ) ) |
| 133 | eqid | ⊢ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) = ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) | |
| 134 | eqid | ⊢ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } = { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } | |
| 135 | 5 129 6 130 133 13 134 | grlimgrtrilem2 | ⊢ ( ( ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ) ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ∧ { 𝑎 , 𝑏 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ) → { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ) |
| 136 | 135 | 3expia | ⊢ ( ( ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ) ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) → ( { 𝑎 , 𝑏 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } → { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ) ) |
| 137 | 5 129 6 130 133 13 134 | grlimgrtrilem2 | ⊢ ( ( ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ) ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ∧ { 𝑎 , 𝑐 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ) → { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) |
| 138 | 137 | 3expia | ⊢ ( ( ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ) ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) → ( { 𝑎 , 𝑐 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } → { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) |
| 139 | 5 129 6 130 133 13 134 | grlimgrtrilem2 | ⊢ ( ( ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ) ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ∧ { 𝑏 , 𝑐 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ) → { ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) |
| 140 | 139 | 3expia | ⊢ ( ( ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ) ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) → ( { 𝑏 , 𝑐 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } → { ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) |
| 141 | 136 138 140 | 3anim123d | ⊢ ( ( ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ) ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) → ( ( { 𝑎 , 𝑏 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ∧ { 𝑎 , 𝑐 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ∧ { 𝑏 , 𝑐 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ) → ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) ) |
| 142 | 141 | anasss | ⊢ ( ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ) → ( ( { 𝑎 , 𝑏 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ∧ { 𝑎 , 𝑐 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ∧ { 𝑏 , 𝑐 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ) → ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) ) |
| 143 | 142 | ancoms | ⊢ ( ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) → ( ( { 𝑎 , 𝑏 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ∧ { 𝑎 , 𝑐 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ∧ { 𝑏 , 𝑐 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ) → ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) ) |
| 144 | 143 | 3adant3 | ⊢ ( ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) → ( ( { 𝑎 , 𝑏 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ∧ { 𝑎 , 𝑐 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ∧ { 𝑏 , 𝑐 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ) → ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) ) |
| 145 | 144 | 3ad2ant2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) → ( ( { 𝑎 , 𝑏 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ∧ { 𝑎 , 𝑐 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ∧ { 𝑏 , 𝑐 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ) → ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) ) |
| 146 | 145 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) ∧ ( ( ( 𝑓 ‘ 𝑎 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑏 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) ∧ ( 𝑓 “ 𝑇 ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝑓 “ 𝑇 ) ) = 3 ) ) → ( ( { 𝑎 , 𝑏 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ∧ { 𝑎 , 𝑐 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ∧ { 𝑏 , 𝑐 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ) → ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) ) |
| 147 | 132 146 | mpd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) ∧ ( ( ( 𝑓 ‘ 𝑎 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑏 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) ∧ ( 𝑓 “ 𝑇 ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝑓 “ 𝑇 ) ) = 3 ) ) → ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) |
| 148 | 115 121 147 | 3jca | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) ∧ ( ( ( 𝑓 ‘ 𝑎 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑏 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) ∧ ( 𝑓 “ 𝑇 ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝑓 “ 𝑇 ) ) = 3 ) ) → ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∧ ( ♯ ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ) = 3 ∧ ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) ) |
| 149 | 86 94 102 106 110 114 148 | 3rspcedvdw | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) ∧ ( ( ( 𝑓 ‘ 𝑎 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑏 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) ∧ ( 𝑓 “ 𝑇 ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝑓 “ 𝑇 ) ) = 3 ) ) → ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) |
| 150 | 78 149 | mpdan | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) → ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) |
| 151 | eqeq1 | ⊢ ( 𝑡 = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } → ( 𝑡 = { 𝑥 , 𝑦 , 𝑧 } ↔ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } = { 𝑥 , 𝑦 , 𝑧 } ) ) | |
| 152 | fveqeq2 | ⊢ ( 𝑡 = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } → ( ( ♯ ‘ 𝑡 ) = 3 ↔ ( ♯ ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ) = 3 ) ) | |
| 153 | 151 152 | 3anbi12d | ⊢ ( 𝑡 = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } → ( ( 𝑡 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ↔ ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) |
| 154 | 153 | rexbidv | ⊢ ( 𝑡 = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } → ( ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( 𝑡 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ↔ ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) |
| 155 | 154 | 2rexbidv | ⊢ ( 𝑡 = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } → ( ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( 𝑡 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ↔ ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) |
| 156 | 39 150 155 | spcedv | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) → ∃ 𝑡 ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( 𝑡 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) |
| 157 | 156 | 3exp | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) → ( ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → ∃ 𝑡 ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( 𝑡 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) ) |
| 158 | 157 | 3expd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) → ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) → ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) → ( ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → ∃ 𝑡 ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( 𝑡 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) ) ) ) |
| 159 | 158 | exlimdv | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ∃ 𝑔 ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) → ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) → ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) → ( ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → ∃ 𝑡 ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( 𝑡 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) ) ) ) |
| 160 | 159 | impcomd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ) → ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) → ( ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → ∃ 𝑡 ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( 𝑡 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) ) ) |
| 161 | 160 | exlimdv | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ) → ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) → ( ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → ∃ 𝑡 ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( 𝑡 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) ) ) |
| 162 | 37 161 | syld | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ) → ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) → ( ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → ∃ 𝑡 ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( 𝑡 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) ) ) |
| 163 | 162 | com13 | ⊢ ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) → ( ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ) → ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → ∃ 𝑡 ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( 𝑡 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) ) ) |
| 164 | 163 | imp | ⊢ ( ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ) ) → ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → ∃ 𝑡 ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( 𝑡 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) ) |
| 165 | 9 18 164 | 3syl | ⊢ ( 𝜑 → ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → ∃ 𝑡 ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( 𝑡 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) ) |
| 166 | 165 | anabsi5 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → ∃ 𝑡 ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( 𝑡 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) |
| 167 | 166 | rexlimdvvva | ⊢ ( 𝜑 → ( ∃ 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → ∃ 𝑡 ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( 𝑡 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) |
| 168 | 8 167 | mpd | ⊢ ( 𝜑 → ∃ 𝑡 ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( 𝑡 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) |
| 169 | 10 13 | isgrtri | ⊢ ( 𝑡 ∈ ( GrTriangles ‘ 𝐻 ) ↔ ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( 𝑡 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) |
| 170 | 169 | exbii | ⊢ ( ∃ 𝑡 𝑡 ∈ ( GrTriangles ‘ 𝐻 ) ↔ ∃ 𝑡 ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( 𝑡 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) |
| 171 | 168 170 | sylibr | ⊢ ( 𝜑 → ∃ 𝑡 𝑡 ∈ ( GrTriangles ‘ 𝐻 ) ) |