This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A triangle in a graph. (Contributed by AV, 20-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grtri.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| grtri.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| Assertion | isgrtri | ⊢ ( 𝑇 ∈ ( GrTriangles ‘ 𝐺 ) ↔ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grtri.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | grtri.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | 1 2 | grtriprop | ⊢ ( 𝑇 ∈ ( GrTriangles ‘ 𝐺 ) → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) |
| 4 | df-tp | ⊢ { 𝑥 , 𝑦 , 𝑧 } = ( { 𝑥 , 𝑦 } ∪ { 𝑧 } ) | |
| 5 | prelpwi | ⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → { 𝑥 , 𝑦 } ∈ 𝒫 𝑉 ) | |
| 6 | snelpwi | ⊢ ( 𝑧 ∈ 𝑉 → { 𝑧 } ∈ 𝒫 𝑉 ) | |
| 7 | 5 6 | anim12i | ⊢ ( ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ∧ 𝑧 ∈ 𝑉 ) → ( { 𝑥 , 𝑦 } ∈ 𝒫 𝑉 ∧ { 𝑧 } ∈ 𝒫 𝑉 ) ) |
| 8 | 7 | anasss | ⊢ ( ( 𝑥 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( { 𝑥 , 𝑦 } ∈ 𝒫 𝑉 ∧ { 𝑧 } ∈ 𝒫 𝑉 ) ) |
| 9 | pwuncl | ⊢ ( ( { 𝑥 , 𝑦 } ∈ 𝒫 𝑉 ∧ { 𝑧 } ∈ 𝒫 𝑉 ) → ( { 𝑥 , 𝑦 } ∪ { 𝑧 } ) ∈ 𝒫 𝑉 ) | |
| 10 | 8 9 | syl | ⊢ ( ( 𝑥 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( { 𝑥 , 𝑦 } ∪ { 𝑧 } ) ∈ 𝒫 𝑉 ) |
| 11 | 4 10 | eqeltrid | ⊢ ( ( 𝑥 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → { 𝑥 , 𝑦 , 𝑧 } ∈ 𝒫 𝑉 ) |
| 12 | 11 | adantr | ⊢ ( ( ( 𝑥 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) → { 𝑥 , 𝑦 , 𝑧 } ∈ 𝒫 𝑉 ) |
| 13 | eleq1 | ⊢ ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } → ( 𝑇 ∈ 𝒫 𝑉 ↔ { 𝑥 , 𝑦 , 𝑧 } ∈ 𝒫 𝑉 ) ) | |
| 14 | 13 | 3ad2ant1 | ⊢ ( ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → ( 𝑇 ∈ 𝒫 𝑉 ↔ { 𝑥 , 𝑦 , 𝑧 } ∈ 𝒫 𝑉 ) ) |
| 15 | 14 | adantl | ⊢ ( ( ( 𝑥 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) → ( 𝑇 ∈ 𝒫 𝑉 ↔ { 𝑥 , 𝑦 , 𝑧 } ∈ 𝒫 𝑉 ) ) |
| 16 | 12 15 | mpbird | ⊢ ( ( ( 𝑥 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) → 𝑇 ∈ 𝒫 𝑉 ) |
| 17 | ovex | ⊢ ( 0 ..^ 3 ) ∈ V | |
| 18 | 17 | mptex | ⊢ ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ∈ V |
| 19 | 18 | a1i | ⊢ ( ( ( 𝑥 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) → ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ∈ V ) |
| 20 | 3anass | ⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ↔ ( 𝑥 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ) | |
| 21 | 20 | biimpri | ⊢ ( ( 𝑥 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) |
| 22 | fveq2 | ⊢ ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } → ( ♯ ‘ 𝑇 ) = ( ♯ ‘ { 𝑥 , 𝑦 , 𝑧 } ) ) | |
| 23 | 22 | eqcomd | ⊢ ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } → ( ♯ ‘ { 𝑥 , 𝑦 , 𝑧 } ) = ( ♯ ‘ 𝑇 ) ) |
| 24 | 23 | 3ad2ant1 | ⊢ ( ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → ( ♯ ‘ { 𝑥 , 𝑦 , 𝑧 } ) = ( ♯ ‘ 𝑇 ) ) |
| 25 | simp2 | ⊢ ( ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → ( ♯ ‘ 𝑇 ) = 3 ) | |
| 26 | 24 25 | eqtrd | ⊢ ( ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → ( ♯ ‘ { 𝑥 , 𝑦 , 𝑧 } ) = 3 ) |
| 27 | eqid | ⊢ ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) = ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) | |
| 28 | eqid | ⊢ { 𝑥 , 𝑦 , 𝑧 } = { 𝑥 , 𝑦 , 𝑧 } | |
| 29 | 27 28 | tpf1o | ⊢ ( ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ∧ ( ♯ ‘ { 𝑥 , 𝑦 , 𝑧 } ) = 3 ) → ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) : ( 0 ..^ 3 ) –1-1-onto→ { 𝑥 , 𝑦 , 𝑧 } ) |
| 30 | 21 26 29 | syl2an | ⊢ ( ( ( 𝑥 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) → ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) : ( 0 ..^ 3 ) –1-1-onto→ { 𝑥 , 𝑦 , 𝑧 } ) |
| 31 | f1oeq3 | ⊢ ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } → ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 ↔ ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) : ( 0 ..^ 3 ) –1-1-onto→ { 𝑥 , 𝑦 , 𝑧 } ) ) | |
| 32 | 31 | 3ad2ant1 | ⊢ ( ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 ↔ ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) : ( 0 ..^ 3 ) –1-1-onto→ { 𝑥 , 𝑦 , 𝑧 } ) ) |
| 33 | 32 | adantl | ⊢ ( ( ( 𝑥 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) → ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 ↔ ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) : ( 0 ..^ 3 ) –1-1-onto→ { 𝑥 , 𝑦 , 𝑧 } ) ) |
| 34 | 30 33 | mpbird | ⊢ ( ( ( 𝑥 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) → ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 ) |
| 35 | 27 | tpf1ofv0 | ⊢ ( 𝑥 ∈ 𝑉 → ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 0 ) = 𝑥 ) |
| 36 | 35 | adantr | ⊢ ( ( 𝑥 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 0 ) = 𝑥 ) |
| 37 | 27 | tpf1ofv1 | ⊢ ( 𝑦 ∈ 𝑉 → ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 1 ) = 𝑦 ) |
| 38 | 37 | adantr | ⊢ ( ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 1 ) = 𝑦 ) |
| 39 | 38 | adantl | ⊢ ( ( 𝑥 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 1 ) = 𝑦 ) |
| 40 | 36 39 | preq12d | ⊢ ( ( 𝑥 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → { ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 0 ) , ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 1 ) } = { 𝑥 , 𝑦 } ) |
| 41 | 40 | eqcomd | ⊢ ( ( 𝑥 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → { 𝑥 , 𝑦 } = { ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 0 ) , ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 1 ) } ) |
| 42 | 41 | eleq1d | ⊢ ( ( 𝑥 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 0 ) , ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 1 ) } ∈ 𝐸 ) ) |
| 43 | 27 | tpf1ofv2 | ⊢ ( 𝑧 ∈ 𝑉 → ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 2 ) = 𝑧 ) |
| 44 | 43 | adantl | ⊢ ( ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 2 ) = 𝑧 ) |
| 45 | 44 | adantl | ⊢ ( ( 𝑥 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 2 ) = 𝑧 ) |
| 46 | 36 45 | preq12d | ⊢ ( ( 𝑥 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → { ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 0 ) , ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 2 ) } = { 𝑥 , 𝑧 } ) |
| 47 | 46 | eqcomd | ⊢ ( ( 𝑥 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → { 𝑥 , 𝑧 } = { ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 0 ) , ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 2 ) } ) |
| 48 | 47 | eleq1d | ⊢ ( ( 𝑥 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( { 𝑥 , 𝑧 } ∈ 𝐸 ↔ { ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 0 ) , ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 2 ) } ∈ 𝐸 ) ) |
| 49 | 39 45 | preq12d | ⊢ ( ( 𝑥 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → { ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 1 ) , ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 2 ) } = { 𝑦 , 𝑧 } ) |
| 50 | 49 | eqcomd | ⊢ ( ( 𝑥 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → { 𝑦 , 𝑧 } = { ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 1 ) , ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 2 ) } ) |
| 51 | 50 | eleq1d | ⊢ ( ( 𝑥 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( { 𝑦 , 𝑧 } ∈ 𝐸 ↔ { ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 1 ) , ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 2 ) } ∈ 𝐸 ) ) |
| 52 | 42 48 51 | 3anbi123d | ⊢ ( ( 𝑥 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ↔ ( { ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 0 ) , ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 1 ) } ∈ 𝐸 ∧ { ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 0 ) , ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 2 ) } ∈ 𝐸 ∧ { ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 1 ) , ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 2 ) } ∈ 𝐸 ) ) ) |
| 53 | 52 | biimpd | ⊢ ( ( 𝑥 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( { ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 0 ) , ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 1 ) } ∈ 𝐸 ∧ { ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 0 ) , ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 2 ) } ∈ 𝐸 ∧ { ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 1 ) , ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 2 ) } ∈ 𝐸 ) ) ) |
| 54 | 53 | 2a1d | ⊢ ( ( 𝑥 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } → ( ( ♯ ‘ 𝑇 ) = 3 → ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( { ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 0 ) , ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 1 ) } ∈ 𝐸 ∧ { ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 0 ) , ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 2 ) } ∈ 𝐸 ∧ { ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 1 ) , ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 2 ) } ∈ 𝐸 ) ) ) ) ) |
| 55 | 54 | 3imp2 | ⊢ ( ( ( 𝑥 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) → ( { ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 0 ) , ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 1 ) } ∈ 𝐸 ∧ { ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 0 ) , ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 2 ) } ∈ 𝐸 ∧ { ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 1 ) , ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 2 ) } ∈ 𝐸 ) ) |
| 56 | 34 55 | jca | ⊢ ( ( ( 𝑥 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) → ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 ∧ ( { ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 0 ) , ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 1 ) } ∈ 𝐸 ∧ { ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 0 ) , ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 2 ) } ∈ 𝐸 ∧ { ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 1 ) , ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 2 ) } ∈ 𝐸 ) ) ) |
| 57 | f1oeq1 | ⊢ ( 𝑓 = ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) → ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 ↔ ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 ) ) | |
| 58 | fveq1 | ⊢ ( 𝑓 = ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) → ( 𝑓 ‘ 0 ) = ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 0 ) ) | |
| 59 | fveq1 | ⊢ ( 𝑓 = ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) → ( 𝑓 ‘ 1 ) = ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 1 ) ) | |
| 60 | 58 59 | preq12d | ⊢ ( 𝑓 = ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) → { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } = { ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 0 ) , ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 1 ) } ) |
| 61 | 60 | eleq1d | ⊢ ( 𝑓 = ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) → ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ↔ { ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 0 ) , ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 1 ) } ∈ 𝐸 ) ) |
| 62 | fveq1 | ⊢ ( 𝑓 = ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) → ( 𝑓 ‘ 2 ) = ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 2 ) ) | |
| 63 | 58 62 | preq12d | ⊢ ( 𝑓 = ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) → { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } = { ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 0 ) , ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 2 ) } ) |
| 64 | 63 | eleq1d | ⊢ ( 𝑓 = ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) → ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ↔ { ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 0 ) , ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 2 ) } ∈ 𝐸 ) ) |
| 65 | 59 62 | preq12d | ⊢ ( 𝑓 = ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) → { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } = { ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 1 ) , ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 2 ) } ) |
| 66 | 65 | eleq1d | ⊢ ( 𝑓 = ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) → ( { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ↔ { ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 1 ) , ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 2 ) } ∈ 𝐸 ) ) |
| 67 | 61 64 66 | 3anbi123d | ⊢ ( 𝑓 = ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) → ( ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ↔ ( { ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 0 ) , ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 1 ) } ∈ 𝐸 ∧ { ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 0 ) , ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 2 ) } ∈ 𝐸 ∧ { ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 1 ) , ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 2 ) } ∈ 𝐸 ) ) ) |
| 68 | 57 67 | anbi12d | ⊢ ( 𝑓 = ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) → ( ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ) ↔ ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 ∧ ( { ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 0 ) , ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 1 ) } ∈ 𝐸 ∧ { ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 0 ) , ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 2 ) } ∈ 𝐸 ∧ { ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 1 ) , ( ( 𝑖 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑖 = 0 , 𝑥 , if ( 𝑖 = 1 , 𝑦 , 𝑧 ) ) ) ‘ 2 ) } ∈ 𝐸 ) ) ) ) |
| 69 | 19 56 68 | spcedv | ⊢ ( ( ( 𝑥 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) → ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ) ) |
| 70 | 16 69 | jca | ⊢ ( ( ( 𝑥 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) → ( 𝑇 ∈ 𝒫 𝑉 ∧ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ) ) ) |
| 71 | 1 | 1vgrex | ⊢ ( 𝑥 ∈ 𝑉 → 𝐺 ∈ V ) |
| 72 | 1 2 | grtri | ⊢ ( 𝐺 ∈ V → ( GrTriangles ‘ 𝐺 ) = { 𝑡 ∈ 𝒫 𝑉 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ) } ) |
| 73 | 72 | eleq2d | ⊢ ( 𝐺 ∈ V → ( 𝑇 ∈ ( GrTriangles ‘ 𝐺 ) ↔ 𝑇 ∈ { 𝑡 ∈ 𝒫 𝑉 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ) } ) ) |
| 74 | 71 73 | syl | ⊢ ( 𝑥 ∈ 𝑉 → ( 𝑇 ∈ ( GrTriangles ‘ 𝐺 ) ↔ 𝑇 ∈ { 𝑡 ∈ 𝒫 𝑉 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ) } ) ) |
| 75 | f1oeq3 | ⊢ ( 𝑡 = 𝑇 → ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ↔ 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 ) ) | |
| 76 | 75 | anbi1d | ⊢ ( 𝑡 = 𝑇 → ( ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ) ↔ ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ) ) ) |
| 77 | 76 | exbidv | ⊢ ( 𝑡 = 𝑇 → ( ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ) ↔ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ) ) ) |
| 78 | 77 | elrab | ⊢ ( 𝑇 ∈ { 𝑡 ∈ 𝒫 𝑉 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ) } ↔ ( 𝑇 ∈ 𝒫 𝑉 ∧ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ) ) ) |
| 79 | 74 78 | bitrdi | ⊢ ( 𝑥 ∈ 𝑉 → ( 𝑇 ∈ ( GrTriangles ‘ 𝐺 ) ↔ ( 𝑇 ∈ 𝒫 𝑉 ∧ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ) ) ) ) |
| 80 | 79 | adantr | ⊢ ( ( 𝑥 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑇 ∈ ( GrTriangles ‘ 𝐺 ) ↔ ( 𝑇 ∈ 𝒫 𝑉 ∧ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ) ) ) ) |
| 81 | 80 | adantr | ⊢ ( ( ( 𝑥 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) → ( 𝑇 ∈ ( GrTriangles ‘ 𝐺 ) ↔ ( 𝑇 ∈ 𝒫 𝑉 ∧ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ) ) ) ) |
| 82 | 70 81 | mpbird | ⊢ ( ( ( 𝑥 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) → 𝑇 ∈ ( GrTriangles ‘ 𝐺 ) ) |
| 83 | 82 | ex | ⊢ ( ( 𝑥 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → 𝑇 ∈ ( GrTriangles ‘ 𝐺 ) ) ) |
| 84 | 83 | rexlimdvva | ⊢ ( 𝑥 ∈ 𝑉 → ( ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → 𝑇 ∈ ( GrTriangles ‘ 𝐺 ) ) ) |
| 85 | 84 | rexlimiv | ⊢ ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → 𝑇 ∈ ( GrTriangles ‘ 𝐺 ) ) |
| 86 | 3 85 | impbii | ⊢ ( 𝑇 ∈ ( GrTriangles ‘ 𝐺 ) ↔ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) |