This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 3 for grlimgrtri . (Contributed by AV, 23-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grlimgrtrilem1.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| grlimgrtrilem1.n | ⊢ 𝑁 = ( 𝐺 ClNeighbVtx 𝑎 ) | ||
| grlimgrtrilem1.i | ⊢ 𝐼 = ( Edg ‘ 𝐺 ) | ||
| grlimgrtrilem1.k | ⊢ 𝐾 = { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁 } | ||
| grlimgrtrilem2.m | ⊢ 𝑀 = ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) | ||
| grlimgrtrilem2.j | ⊢ 𝐽 = ( Edg ‘ 𝐻 ) | ||
| grlimgrtrilem2.l | ⊢ 𝐿 = { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀 } | ||
| Assertion | grlimgrtrilem2 | ⊢ ( ( ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ) ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ∧ { 𝑏 , 𝑐 } ∈ 𝐾 ) → { ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∈ 𝐽 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grlimgrtrilem1.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | grlimgrtrilem1.n | ⊢ 𝑁 = ( 𝐺 ClNeighbVtx 𝑎 ) | |
| 3 | grlimgrtrilem1.i | ⊢ 𝐼 = ( Edg ‘ 𝐺 ) | |
| 4 | grlimgrtrilem1.k | ⊢ 𝐾 = { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁 } | |
| 5 | grlimgrtrilem2.m | ⊢ 𝑀 = ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) | |
| 6 | grlimgrtrilem2.j | ⊢ 𝐽 = ( Edg ‘ 𝐻 ) | |
| 7 | grlimgrtrilem2.l | ⊢ 𝐿 = { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀 } | |
| 8 | imaeq2 | ⊢ ( 𝑖 = { 𝑏 , 𝑐 } → ( 𝑓 “ 𝑖 ) = ( 𝑓 “ { 𝑏 , 𝑐 } ) ) | |
| 9 | fveq2 | ⊢ ( 𝑖 = { 𝑏 , 𝑐 } → ( 𝑔 ‘ 𝑖 ) = ( 𝑔 ‘ { 𝑏 , 𝑐 } ) ) | |
| 10 | 8 9 | eqeq12d | ⊢ ( 𝑖 = { 𝑏 , 𝑐 } → ( ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ↔ ( 𝑓 “ { 𝑏 , 𝑐 } ) = ( 𝑔 ‘ { 𝑏 , 𝑐 } ) ) ) |
| 11 | 10 | rspcv | ⊢ ( { 𝑏 , 𝑐 } ∈ 𝐾 → ( ∀ 𝑖 ∈ 𝐾 ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) → ( 𝑓 “ { 𝑏 , 𝑐 } ) = ( 𝑔 ‘ { 𝑏 , 𝑐 } ) ) ) |
| 12 | f1ofn | ⊢ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 → 𝑓 Fn 𝑁 ) | |
| 13 | 12 | adantr | ⊢ ( ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ) → 𝑓 Fn 𝑁 ) |
| 14 | 13 | adantl | ⊢ ( ( { 𝑏 , 𝑐 } ∈ 𝐾 ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ) ) → 𝑓 Fn 𝑁 ) |
| 15 | 4 | eleq2i | ⊢ ( { 𝑏 , 𝑐 } ∈ 𝐾 ↔ { 𝑏 , 𝑐 } ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁 } ) |
| 16 | sseq1 | ⊢ ( 𝑥 = { 𝑏 , 𝑐 } → ( 𝑥 ⊆ 𝑁 ↔ { 𝑏 , 𝑐 } ⊆ 𝑁 ) ) | |
| 17 | 16 | elrab | ⊢ ( { 𝑏 , 𝑐 } ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁 } ↔ ( { 𝑏 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ⊆ 𝑁 ) ) |
| 18 | 15 17 | bitri | ⊢ ( { 𝑏 , 𝑐 } ∈ 𝐾 ↔ ( { 𝑏 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ⊆ 𝑁 ) ) |
| 19 | vex | ⊢ 𝑏 ∈ V | |
| 20 | vex | ⊢ 𝑐 ∈ V | |
| 21 | 19 20 | prss | ⊢ ( ( 𝑏 ∈ 𝑁 ∧ 𝑐 ∈ 𝑁 ) ↔ { 𝑏 , 𝑐 } ⊆ 𝑁 ) |
| 22 | simpl | ⊢ ( ( 𝑏 ∈ 𝑁 ∧ 𝑐 ∈ 𝑁 ) → 𝑏 ∈ 𝑁 ) | |
| 23 | 21 22 | sylbir | ⊢ ( { 𝑏 , 𝑐 } ⊆ 𝑁 → 𝑏 ∈ 𝑁 ) |
| 24 | 18 23 | simplbiim | ⊢ ( { 𝑏 , 𝑐 } ∈ 𝐾 → 𝑏 ∈ 𝑁 ) |
| 25 | 24 | adantr | ⊢ ( ( { 𝑏 , 𝑐 } ∈ 𝐾 ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ) ) → 𝑏 ∈ 𝑁 ) |
| 26 | simpr | ⊢ ( ( 𝑏 ∈ 𝑁 ∧ 𝑐 ∈ 𝑁 ) → 𝑐 ∈ 𝑁 ) | |
| 27 | 21 26 | sylbir | ⊢ ( { 𝑏 , 𝑐 } ⊆ 𝑁 → 𝑐 ∈ 𝑁 ) |
| 28 | 18 27 | simplbiim | ⊢ ( { 𝑏 , 𝑐 } ∈ 𝐾 → 𝑐 ∈ 𝑁 ) |
| 29 | 28 | adantr | ⊢ ( ( { 𝑏 , 𝑐 } ∈ 𝐾 ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ) ) → 𝑐 ∈ 𝑁 ) |
| 30 | fnimapr | ⊢ ( ( 𝑓 Fn 𝑁 ∧ 𝑏 ∈ 𝑁 ∧ 𝑐 ∈ 𝑁 ) → ( 𝑓 “ { 𝑏 , 𝑐 } ) = { ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ) | |
| 31 | 14 25 29 30 | syl3anc | ⊢ ( ( { 𝑏 , 𝑐 } ∈ 𝐾 ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ) ) → ( 𝑓 “ { 𝑏 , 𝑐 } ) = { ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ) |
| 32 | 31 | eqeq1d | ⊢ ( ( { 𝑏 , 𝑐 } ∈ 𝐾 ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ) ) → ( ( 𝑓 “ { 𝑏 , 𝑐 } ) = ( 𝑔 ‘ { 𝑏 , 𝑐 } ) ↔ { ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } = ( 𝑔 ‘ { 𝑏 , 𝑐 } ) ) ) |
| 33 | ssrab2 | ⊢ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀 } ⊆ 𝐽 | |
| 34 | 7 33 | eqsstri | ⊢ 𝐿 ⊆ 𝐽 |
| 35 | f1of | ⊢ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 → 𝑔 : 𝐾 ⟶ 𝐿 ) | |
| 36 | 35 | adantl | ⊢ ( ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ) → 𝑔 : 𝐾 ⟶ 𝐿 ) |
| 37 | 36 | adantl | ⊢ ( ( { 𝑏 , 𝑐 } ∈ 𝐾 ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ) ) → 𝑔 : 𝐾 ⟶ 𝐿 ) |
| 38 | simpl | ⊢ ( ( { 𝑏 , 𝑐 } ∈ 𝐾 ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ) ) → { 𝑏 , 𝑐 } ∈ 𝐾 ) | |
| 39 | 37 38 | ffvelcdmd | ⊢ ( ( { 𝑏 , 𝑐 } ∈ 𝐾 ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ) ) → ( 𝑔 ‘ { 𝑏 , 𝑐 } ) ∈ 𝐿 ) |
| 40 | 34 39 | sselid | ⊢ ( ( { 𝑏 , 𝑐 } ∈ 𝐾 ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ) ) → ( 𝑔 ‘ { 𝑏 , 𝑐 } ) ∈ 𝐽 ) |
| 41 | eleq1 | ⊢ ( { ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } = ( 𝑔 ‘ { 𝑏 , 𝑐 } ) → ( { ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∈ 𝐽 ↔ ( 𝑔 ‘ { 𝑏 , 𝑐 } ) ∈ 𝐽 ) ) | |
| 42 | 40 41 | syl5ibrcom | ⊢ ( ( { 𝑏 , 𝑐 } ∈ 𝐾 ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ) ) → ( { ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } = ( 𝑔 ‘ { 𝑏 , 𝑐 } ) → { ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∈ 𝐽 ) ) |
| 43 | 32 42 | sylbid | ⊢ ( ( { 𝑏 , 𝑐 } ∈ 𝐾 ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ) ) → ( ( 𝑓 “ { 𝑏 , 𝑐 } ) = ( 𝑔 ‘ { 𝑏 , 𝑐 } ) → { ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∈ 𝐽 ) ) |
| 44 | 43 | ex | ⊢ ( { 𝑏 , 𝑐 } ∈ 𝐾 → ( ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ) → ( ( 𝑓 “ { 𝑏 , 𝑐 } ) = ( 𝑔 ‘ { 𝑏 , 𝑐 } ) → { ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∈ 𝐽 ) ) ) |
| 45 | 44 | com23 | ⊢ ( { 𝑏 , 𝑐 } ∈ 𝐾 → ( ( 𝑓 “ { 𝑏 , 𝑐 } ) = ( 𝑔 ‘ { 𝑏 , 𝑐 } ) → ( ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ) → { ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∈ 𝐽 ) ) ) |
| 46 | 11 45 | syld | ⊢ ( { 𝑏 , 𝑐 } ∈ 𝐾 → ( ∀ 𝑖 ∈ 𝐾 ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) → ( ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ) → { ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∈ 𝐽 ) ) ) |
| 47 | 46 | 3imp31 | ⊢ ( ( ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ) ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ∧ { 𝑏 , 𝑐 } ∈ 𝐾 ) → { ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∈ 𝐽 ) |