This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conditions for mapping triangles onto triangles. Lemma for grimgrtri and grlimgrtri . (Contributed by AV, 23-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | grtrimap | ⊢ ( 𝐹 : 𝑉 –1-1→ 𝑊 → ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑊 ∧ ( 𝐹 ‘ 𝑏 ) ∈ 𝑊 ∧ ( 𝐹 ‘ 𝑐 ) ∈ 𝑊 ) ∧ ( 𝐹 “ 𝑇 ) = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) = 3 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f | ⊢ ( 𝐹 : 𝑉 –1-1→ 𝑊 → 𝐹 : 𝑉 ⟶ 𝑊 ) | |
| 2 | 1 | ffvelcdmda | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ 𝑎 ∈ 𝑉 ) → ( 𝐹 ‘ 𝑎 ) ∈ 𝑊 ) |
| 3 | 2 | ex | ⊢ ( 𝐹 : 𝑉 –1-1→ 𝑊 → ( 𝑎 ∈ 𝑉 → ( 𝐹 ‘ 𝑎 ) ∈ 𝑊 ) ) |
| 4 | 1 | ffvelcdmda | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ 𝑏 ∈ 𝑉 ) → ( 𝐹 ‘ 𝑏 ) ∈ 𝑊 ) |
| 5 | 4 | ex | ⊢ ( 𝐹 : 𝑉 –1-1→ 𝑊 → ( 𝑏 ∈ 𝑉 → ( 𝐹 ‘ 𝑏 ) ∈ 𝑊 ) ) |
| 6 | 1 | ffvelcdmda | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ 𝑐 ∈ 𝑉 ) → ( 𝐹 ‘ 𝑐 ) ∈ 𝑊 ) |
| 7 | 6 | ex | ⊢ ( 𝐹 : 𝑉 –1-1→ 𝑊 → ( 𝑐 ∈ 𝑉 → ( 𝐹 ‘ 𝑐 ) ∈ 𝑊 ) ) |
| 8 | 3 5 7 | 3anim123d | ⊢ ( 𝐹 : 𝑉 –1-1→ 𝑊 → ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑊 ∧ ( 𝐹 ‘ 𝑏 ) ∈ 𝑊 ∧ ( 𝐹 ‘ 𝑐 ) ∈ 𝑊 ) ) ) |
| 9 | 8 | adantrd | ⊢ ( 𝐹 : 𝑉 –1-1→ 𝑊 → ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) → ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑊 ∧ ( 𝐹 ‘ 𝑏 ) ∈ 𝑊 ∧ ( 𝐹 ‘ 𝑐 ) ∈ 𝑊 ) ) ) |
| 10 | 9 | imp | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) ) → ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑊 ∧ ( 𝐹 ‘ 𝑏 ) ∈ 𝑊 ∧ ( 𝐹 ‘ 𝑐 ) ∈ 𝑊 ) ) |
| 11 | imaeq2 | ⊢ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } → ( 𝐹 “ 𝑇 ) = ( 𝐹 “ { 𝑎 , 𝑏 , 𝑐 } ) ) | |
| 12 | 11 | ad2antrl | ⊢ ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) → ( 𝐹 “ 𝑇 ) = ( 𝐹 “ { 𝑎 , 𝑏 , 𝑐 } ) ) |
| 13 | 12 | adantl | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) ) → ( 𝐹 “ 𝑇 ) = ( 𝐹 “ { 𝑎 , 𝑏 , 𝑐 } ) ) |
| 14 | f1fn | ⊢ ( 𝐹 : 𝑉 –1-1→ 𝑊 → 𝐹 Fn 𝑉 ) | |
| 15 | 14 | adantr | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) ) → 𝐹 Fn 𝑉 ) |
| 16 | simprl1 | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) ) → 𝑎 ∈ 𝑉 ) | |
| 17 | simprl2 | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) ) → 𝑏 ∈ 𝑉 ) | |
| 18 | simprl3 | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) ) → 𝑐 ∈ 𝑉 ) | |
| 19 | 15 16 17 18 | fnimatpd | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) ) → ( 𝐹 “ { 𝑎 , 𝑏 , 𝑐 } ) = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ) |
| 20 | 13 19 | eqtrd | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) ) → ( 𝐹 “ 𝑇 ) = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ) |
| 21 | simpl | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) ) → 𝐹 : 𝑉 –1-1→ 𝑊 ) | |
| 22 | tpssi | ⊢ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → { 𝑎 , 𝑏 , 𝑐 } ⊆ 𝑉 ) | |
| 23 | 22 | adantr | ⊢ ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) → { 𝑎 , 𝑏 , 𝑐 } ⊆ 𝑉 ) |
| 24 | sseq1 | ⊢ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } → ( 𝑇 ⊆ 𝑉 ↔ { 𝑎 , 𝑏 , 𝑐 } ⊆ 𝑉 ) ) | |
| 25 | 24 | ad2antrl | ⊢ ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) → ( 𝑇 ⊆ 𝑉 ↔ { 𝑎 , 𝑏 , 𝑐 } ⊆ 𝑉 ) ) |
| 26 | 23 25 | mpbird | ⊢ ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) → 𝑇 ⊆ 𝑉 ) |
| 27 | 26 | adantl | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) ) → 𝑇 ⊆ 𝑉 ) |
| 28 | tpex | ⊢ { 𝑎 , 𝑏 , 𝑐 } ∈ V | |
| 29 | eleq1 | ⊢ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } → ( 𝑇 ∈ V ↔ { 𝑎 , 𝑏 , 𝑐 } ∈ V ) ) | |
| 30 | 28 29 | mpbiri | ⊢ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } → 𝑇 ∈ V ) |
| 31 | 30 | ad2antrl | ⊢ ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) → 𝑇 ∈ V ) |
| 32 | 31 | adantl | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) ) → 𝑇 ∈ V ) |
| 33 | f1imaeng | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ 𝑇 ⊆ 𝑉 ∧ 𝑇 ∈ V ) → ( 𝐹 “ 𝑇 ) ≈ 𝑇 ) | |
| 34 | hasheni | ⊢ ( ( 𝐹 “ 𝑇 ) ≈ 𝑇 → ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) = ( ♯ ‘ 𝑇 ) ) | |
| 35 | 33 34 | syl | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ 𝑇 ⊆ 𝑉 ∧ 𝑇 ∈ V ) → ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) = ( ♯ ‘ 𝑇 ) ) |
| 36 | 35 | eqcomd | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ 𝑇 ⊆ 𝑉 ∧ 𝑇 ∈ V ) → ( ♯ ‘ 𝑇 ) = ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) ) |
| 37 | 21 27 32 36 | syl3anc | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) ) → ( ♯ ‘ 𝑇 ) = ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) ) |
| 38 | simprrr | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) ) → ( ♯ ‘ 𝑇 ) = 3 ) | |
| 39 | 37 38 | eqtr3d | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) ) → ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) = 3 ) |
| 40 | 10 20 39 | 3jca | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) ) → ( ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑊 ∧ ( 𝐹 ‘ 𝑏 ) ∈ 𝑊 ∧ ( 𝐹 ‘ 𝑐 ) ∈ 𝑊 ) ∧ ( 𝐹 “ 𝑇 ) = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) = 3 ) ) |
| 41 | 40 | ex | ⊢ ( 𝐹 : 𝑉 –1-1→ 𝑊 → ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑊 ∧ ( 𝐹 ‘ 𝑏 ) ∈ 𝑊 ∧ ( 𝐹 ‘ 𝑐 ) ∈ 𝑊 ) ∧ ( 𝐹 “ 𝑇 ) = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) = 3 ) ) ) |