This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Triple application of rspcedvdw . (Contributed by SN, 20-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 3rspcedvdw.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜒 ) ) | |
| 3rspcedvdw.2 | ⊢ ( 𝑦 = 𝐵 → ( 𝜒 ↔ 𝜃 ) ) | ||
| 3rspcedvdw.3 | ⊢ ( 𝑧 = 𝐶 → ( 𝜃 ↔ 𝜏 ) ) | ||
| 3rspcedvdw.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | ||
| 3rspcedvdw.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑌 ) | ||
| 3rspcedvdw.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑍 ) | ||
| 3rspcedvdw.4 | ⊢ ( 𝜑 → 𝜏 ) | ||
| Assertion | 3rspcedvdw | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑌 ∃ 𝑧 ∈ 𝑍 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3rspcedvdw.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜒 ) ) | |
| 2 | 3rspcedvdw.2 | ⊢ ( 𝑦 = 𝐵 → ( 𝜒 ↔ 𝜃 ) ) | |
| 3 | 3rspcedvdw.3 | ⊢ ( 𝑧 = 𝐶 → ( 𝜃 ↔ 𝜏 ) ) | |
| 4 | 3rspcedvdw.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | |
| 5 | 3rspcedvdw.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑌 ) | |
| 6 | 3rspcedvdw.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑍 ) | |
| 7 | 3rspcedvdw.4 | ⊢ ( 𝜑 → 𝜏 ) | |
| 8 | 1 2 3 | rspc3ev | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝜏 ) → ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑌 ∃ 𝑧 ∈ 𝑍 𝜓 ) |
| 9 | 4 5 6 7 8 | syl31anc | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑌 ∃ 𝑧 ∈ 𝑍 𝜓 ) |