This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If one of two locally isomorphic graphs has a triangle, so does the other. The triangle in the other graph is not necessarily the image ( F " T ) of the triangle T in the first graph. (Contributed by AV, 24-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grlimgrtri.g | |- ( ph -> G e. USPGraph ) |
|
| grlimgrtri.h | |- ( ph -> H e. USPGraph ) |
||
| grlimgrtri.n | |- ( ph -> F e. ( G GraphLocIso H ) ) |
||
| grlimgrtri.t | |- ( ph -> T e. ( GrTriangles ` G ) ) |
||
| Assertion | grlimgrtri | |- ( ph -> E. t t e. ( GrTriangles ` H ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grlimgrtri.g | |- ( ph -> G e. USPGraph ) |
|
| 2 | grlimgrtri.h | |- ( ph -> H e. USPGraph ) |
|
| 3 | grlimgrtri.n | |- ( ph -> F e. ( G GraphLocIso H ) ) |
|
| 4 | grlimgrtri.t | |- ( ph -> T e. ( GrTriangles ` G ) ) |
|
| 5 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 6 | eqid | |- ( Edg ` G ) = ( Edg ` G ) |
|
| 7 | 5 6 | grtriprop | |- ( T e. ( GrTriangles ` G ) -> E. a e. ( Vtx ` G ) E. b e. ( Vtx ` G ) E. c e. ( Vtx ` G ) ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) |
| 8 | 4 7 | syl | |- ( ph -> E. a e. ( Vtx ` G ) E. b e. ( Vtx ` G ) E. c e. ( Vtx ` G ) ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) |
| 9 | 1 2 3 | 3jca | |- ( ph -> ( G e. USPGraph /\ H e. USPGraph /\ F e. ( G GraphLocIso H ) ) ) |
| 10 | eqid | |- ( Vtx ` H ) = ( Vtx ` H ) |
|
| 11 | eqid | |- ( G ClNeighbVtx v ) = ( G ClNeighbVtx v ) |
|
| 12 | eqid | |- ( H ClNeighbVtx ( F ` v ) ) = ( H ClNeighbVtx ( F ` v ) ) |
|
| 13 | eqid | |- ( Edg ` H ) = ( Edg ` H ) |
|
| 14 | sseq1 | |- ( y = x -> ( y C_ ( G ClNeighbVtx v ) <-> x C_ ( G ClNeighbVtx v ) ) ) |
|
| 15 | 14 | cbvrabv | |- { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx v ) } = { x e. ( Edg ` G ) | x C_ ( G ClNeighbVtx v ) } |
| 16 | sseq1 | |- ( y = x -> ( y C_ ( H ClNeighbVtx ( F ` v ) ) <-> x C_ ( H ClNeighbVtx ( F ` v ) ) ) ) |
|
| 17 | 16 | cbvrabv | |- { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` v ) ) } = { x e. ( Edg ` H ) | x C_ ( H ClNeighbVtx ( F ` v ) ) } |
| 18 | 5 10 11 12 6 13 15 17 | usgrlimprop | |- ( ( G e. USPGraph /\ H e. USPGraph /\ F e. ( G GraphLocIso H ) ) -> ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ A. v e. ( Vtx ` G ) E. f ( f : ( G ClNeighbVtx v ) -1-1-onto-> ( H ClNeighbVtx ( F ` v ) ) /\ E. g ( g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx v ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` v ) ) } /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx v ) } ( f " i ) = ( g ` i ) ) ) ) ) |
| 19 | eqidd | |- ( v = a -> f = f ) |
|
| 20 | oveq2 | |- ( v = a -> ( G ClNeighbVtx v ) = ( G ClNeighbVtx a ) ) |
|
| 21 | fveq2 | |- ( v = a -> ( F ` v ) = ( F ` a ) ) |
|
| 22 | 21 | oveq2d | |- ( v = a -> ( H ClNeighbVtx ( F ` v ) ) = ( H ClNeighbVtx ( F ` a ) ) ) |
| 23 | 19 20 22 | f1oeq123d | |- ( v = a -> ( f : ( G ClNeighbVtx v ) -1-1-onto-> ( H ClNeighbVtx ( F ` v ) ) <-> f : ( G ClNeighbVtx a ) -1-1-onto-> ( H ClNeighbVtx ( F ` a ) ) ) ) |
| 24 | eqidd | |- ( v = a -> g = g ) |
|
| 25 | 20 | sseq2d | |- ( v = a -> ( y C_ ( G ClNeighbVtx v ) <-> y C_ ( G ClNeighbVtx a ) ) ) |
| 26 | 25 | rabbidv | |- ( v = a -> { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx v ) } = { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ) |
| 27 | 22 | sseq2d | |- ( v = a -> ( y C_ ( H ClNeighbVtx ( F ` v ) ) <-> y C_ ( H ClNeighbVtx ( F ` a ) ) ) ) |
| 28 | 27 | rabbidv | |- ( v = a -> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` v ) ) } = { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` a ) ) } ) |
| 29 | 24 26 28 | f1oeq123d | |- ( v = a -> ( g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx v ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` v ) ) } <-> g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` a ) ) } ) ) |
| 30 | 26 | raleqdv | |- ( v = a -> ( A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx v ) } ( f " i ) = ( g ` i ) <-> A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ( f " i ) = ( g ` i ) ) ) |
| 31 | 29 30 | anbi12d | |- ( v = a -> ( ( g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx v ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` v ) ) } /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx v ) } ( f " i ) = ( g ` i ) ) <-> ( g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` a ) ) } /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ( f " i ) = ( g ` i ) ) ) ) |
| 32 | 31 | exbidv | |- ( v = a -> ( E. g ( g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx v ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` v ) ) } /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx v ) } ( f " i ) = ( g ` i ) ) <-> E. g ( g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` a ) ) } /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ( f " i ) = ( g ` i ) ) ) ) |
| 33 | 23 32 | anbi12d | |- ( v = a -> ( ( f : ( G ClNeighbVtx v ) -1-1-onto-> ( H ClNeighbVtx ( F ` v ) ) /\ E. g ( g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx v ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` v ) ) } /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx v ) } ( f " i ) = ( g ` i ) ) ) <-> ( f : ( G ClNeighbVtx a ) -1-1-onto-> ( H ClNeighbVtx ( F ` a ) ) /\ E. g ( g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` a ) ) } /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ( f " i ) = ( g ` i ) ) ) ) ) |
| 34 | 33 | exbidv | |- ( v = a -> ( E. f ( f : ( G ClNeighbVtx v ) -1-1-onto-> ( H ClNeighbVtx ( F ` v ) ) /\ E. g ( g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx v ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` v ) ) } /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx v ) } ( f " i ) = ( g ` i ) ) ) <-> E. f ( f : ( G ClNeighbVtx a ) -1-1-onto-> ( H ClNeighbVtx ( F ` a ) ) /\ E. g ( g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` a ) ) } /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ( f " i ) = ( g ` i ) ) ) ) ) |
| 35 | 34 | rspcv | |- ( a e. ( Vtx ` G ) -> ( A. v e. ( Vtx ` G ) E. f ( f : ( G ClNeighbVtx v ) -1-1-onto-> ( H ClNeighbVtx ( F ` v ) ) /\ E. g ( g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx v ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` v ) ) } /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx v ) } ( f " i ) = ( g ` i ) ) ) -> E. f ( f : ( G ClNeighbVtx a ) -1-1-onto-> ( H ClNeighbVtx ( F ` a ) ) /\ E. g ( g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` a ) ) } /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ( f " i ) = ( g ` i ) ) ) ) ) |
| 36 | 35 | 3ad2ant1 | |- ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) -> ( A. v e. ( Vtx ` G ) E. f ( f : ( G ClNeighbVtx v ) -1-1-onto-> ( H ClNeighbVtx ( F ` v ) ) /\ E. g ( g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx v ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` v ) ) } /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx v ) } ( f " i ) = ( g ` i ) ) ) -> E. f ( f : ( G ClNeighbVtx a ) -1-1-onto-> ( H ClNeighbVtx ( F ` a ) ) /\ E. g ( g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` a ) ) } /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ( f " i ) = ( g ` i ) ) ) ) ) |
| 37 | 36 | adantl | |- ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) ) -> ( A. v e. ( Vtx ` G ) E. f ( f : ( G ClNeighbVtx v ) -1-1-onto-> ( H ClNeighbVtx ( F ` v ) ) /\ E. g ( g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx v ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` v ) ) } /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx v ) } ( f " i ) = ( g ` i ) ) ) -> E. f ( f : ( G ClNeighbVtx a ) -1-1-onto-> ( H ClNeighbVtx ( F ` a ) ) /\ E. g ( g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` a ) ) } /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ( f " i ) = ( g ` i ) ) ) ) ) |
| 38 | tpex | |- { ( f ` a ) , ( f ` b ) , ( f ` c ) } e. _V |
|
| 39 | 38 | a1i | |- ( ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) ) /\ ( ( g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` a ) ) } /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ( f " i ) = ( g ` i ) ) /\ f : ( G ClNeighbVtx a ) -1-1-onto-> ( H ClNeighbVtx ( F ` a ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) -> { ( f ` a ) , ( f ` b ) , ( f ` c ) } e. _V ) |
| 40 | f1of1 | |- ( f : ( G ClNeighbVtx a ) -1-1-onto-> ( H ClNeighbVtx ( F ` a ) ) -> f : ( G ClNeighbVtx a ) -1-1-> ( H ClNeighbVtx ( F ` a ) ) ) |
|
| 41 | 40 | 3ad2ant2 | |- ( ( ( g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` a ) ) } /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ( f " i ) = ( g ` i ) ) /\ f : ( G ClNeighbVtx a ) -1-1-onto-> ( H ClNeighbVtx ( F ` a ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) -> f : ( G ClNeighbVtx a ) -1-1-> ( H ClNeighbVtx ( F ` a ) ) ) |
| 42 | 41 | 3ad2ant2 | |- ( ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) ) /\ ( ( g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` a ) ) } /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ( f " i ) = ( g ` i ) ) /\ f : ( G ClNeighbVtx a ) -1-1-onto-> ( H ClNeighbVtx ( F ` a ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) -> f : ( G ClNeighbVtx a ) -1-1-> ( H ClNeighbVtx ( F ` a ) ) ) |
| 43 | 5 | clnbgrvtxel | |- ( a e. ( Vtx ` G ) -> a e. ( G ClNeighbVtx a ) ) |
| 44 | 43 | 3ad2ant1 | |- ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) -> a e. ( G ClNeighbVtx a ) ) |
| 45 | 44 | adantr | |- ( ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) -> a e. ( G ClNeighbVtx a ) ) |
| 46 | simplr | |- ( ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ { a , b } e. ( Edg ` G ) ) -> b e. ( Vtx ` G ) ) |
|
| 47 | simpll | |- ( ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ { a , b } e. ( Edg ` G ) ) -> a e. ( Vtx ` G ) ) |
|
| 48 | simpr | |- ( ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ { a , b } e. ( Edg ` G ) ) -> { a , b } e. ( Edg ` G ) ) |
|
| 49 | 5 6 | predgclnbgrel | |- ( ( b e. ( Vtx ` G ) /\ a e. ( Vtx ` G ) /\ { a , b } e. ( Edg ` G ) ) -> b e. ( G ClNeighbVtx a ) ) |
| 50 | 46 47 48 49 | syl3anc | |- ( ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ { a , b } e. ( Edg ` G ) ) -> b e. ( G ClNeighbVtx a ) ) |
| 51 | 50 | 2a1d | |- ( ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ { a , b } e. ( Edg ` G ) ) -> ( { a , c } e. ( Edg ` G ) -> ( { b , c } e. ( Edg ` G ) -> b e. ( G ClNeighbVtx a ) ) ) ) |
| 52 | 51 | ex | |- ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) -> ( { a , b } e. ( Edg ` G ) -> ( { a , c } e. ( Edg ` G ) -> ( { b , c } e. ( Edg ` G ) -> b e. ( G ClNeighbVtx a ) ) ) ) ) |
| 53 | 52 | 3impd | |- ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) -> ( ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) -> b e. ( G ClNeighbVtx a ) ) ) |
| 54 | 53 | 3adant3 | |- ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) -> ( ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) -> b e. ( G ClNeighbVtx a ) ) ) |
| 55 | 54 | imp | |- ( ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) -> b e. ( G ClNeighbVtx a ) ) |
| 56 | simplr | |- ( ( ( a e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) /\ { a , c } e. ( Edg ` G ) ) -> c e. ( Vtx ` G ) ) |
|
| 57 | simpll | |- ( ( ( a e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) /\ { a , c } e. ( Edg ` G ) ) -> a e. ( Vtx ` G ) ) |
|
| 58 | simpr | |- ( ( ( a e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) /\ { a , c } e. ( Edg ` G ) ) -> { a , c } e. ( Edg ` G ) ) |
|
| 59 | 5 6 | predgclnbgrel | |- ( ( c e. ( Vtx ` G ) /\ a e. ( Vtx ` G ) /\ { a , c } e. ( Edg ` G ) ) -> c e. ( G ClNeighbVtx a ) ) |
| 60 | 56 57 58 59 | syl3anc | |- ( ( ( a e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) /\ { a , c } e. ( Edg ` G ) ) -> c e. ( G ClNeighbVtx a ) ) |
| 61 | 60 | a1d | |- ( ( ( a e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) /\ { a , c } e. ( Edg ` G ) ) -> ( { b , c } e. ( Edg ` G ) -> c e. ( G ClNeighbVtx a ) ) ) |
| 62 | 61 | ex | |- ( ( a e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) -> ( { a , c } e. ( Edg ` G ) -> ( { b , c } e. ( Edg ` G ) -> c e. ( G ClNeighbVtx a ) ) ) ) |
| 63 | 62 | a1d | |- ( ( a e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) -> ( { a , b } e. ( Edg ` G ) -> ( { a , c } e. ( Edg ` G ) -> ( { b , c } e. ( Edg ` G ) -> c e. ( G ClNeighbVtx a ) ) ) ) ) |
| 64 | 63 | 3impd | |- ( ( a e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) -> ( ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) -> c e. ( G ClNeighbVtx a ) ) ) |
| 65 | 64 | 3adant2 | |- ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) -> ( ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) -> c e. ( G ClNeighbVtx a ) ) ) |
| 66 | 65 | imp | |- ( ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) -> c e. ( G ClNeighbVtx a ) ) |
| 67 | 45 55 66 | 3jca | |- ( ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) -> ( a e. ( G ClNeighbVtx a ) /\ b e. ( G ClNeighbVtx a ) /\ c e. ( G ClNeighbVtx a ) ) ) |
| 68 | 67 | ex | |- ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) -> ( ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) -> ( a e. ( G ClNeighbVtx a ) /\ b e. ( G ClNeighbVtx a ) /\ c e. ( G ClNeighbVtx a ) ) ) ) |
| 69 | 68 | 2a1d | |- ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) -> ( T = { a , b , c } -> ( ( # ` T ) = 3 -> ( ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) -> ( a e. ( G ClNeighbVtx a ) /\ b e. ( G ClNeighbVtx a ) /\ c e. ( G ClNeighbVtx a ) ) ) ) ) ) |
| 70 | 69 | 3impd | |- ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) -> ( ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) -> ( a e. ( G ClNeighbVtx a ) /\ b e. ( G ClNeighbVtx a ) /\ c e. ( G ClNeighbVtx a ) ) ) ) |
| 71 | 70 | a1d | |- ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) -> ( ( ( g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` a ) ) } /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ( f " i ) = ( g ` i ) ) /\ f : ( G ClNeighbVtx a ) -1-1-onto-> ( H ClNeighbVtx ( F ` a ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) -> ( ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) -> ( a e. ( G ClNeighbVtx a ) /\ b e. ( G ClNeighbVtx a ) /\ c e. ( G ClNeighbVtx a ) ) ) ) ) |
| 72 | 71 | adantl | |- ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) ) -> ( ( ( g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` a ) ) } /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ( f " i ) = ( g ` i ) ) /\ f : ( G ClNeighbVtx a ) -1-1-onto-> ( H ClNeighbVtx ( F ` a ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) -> ( ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) -> ( a e. ( G ClNeighbVtx a ) /\ b e. ( G ClNeighbVtx a ) /\ c e. ( G ClNeighbVtx a ) ) ) ) ) |
| 73 | 72 | 3imp | |- ( ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) ) /\ ( ( g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` a ) ) } /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ( f " i ) = ( g ` i ) ) /\ f : ( G ClNeighbVtx a ) -1-1-onto-> ( H ClNeighbVtx ( F ` a ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) -> ( a e. ( G ClNeighbVtx a ) /\ b e. ( G ClNeighbVtx a ) /\ c e. ( G ClNeighbVtx a ) ) ) |
| 74 | 3simpa | |- ( ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) -> ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) |
|
| 75 | 74 | 3ad2ant3 | |- ( ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) ) /\ ( ( g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` a ) ) } /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ( f " i ) = ( g ` i ) ) /\ f : ( G ClNeighbVtx a ) -1-1-onto-> ( H ClNeighbVtx ( F ` a ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) -> ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) |
| 76 | 73 75 | jca | |- ( ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) ) /\ ( ( g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` a ) ) } /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ( f " i ) = ( g ` i ) ) /\ f : ( G ClNeighbVtx a ) -1-1-onto-> ( H ClNeighbVtx ( F ` a ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) -> ( ( a e. ( G ClNeighbVtx a ) /\ b e. ( G ClNeighbVtx a ) /\ c e. ( G ClNeighbVtx a ) ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) ) |
| 77 | grtrimap | |- ( f : ( G ClNeighbVtx a ) -1-1-> ( H ClNeighbVtx ( F ` a ) ) -> ( ( ( a e. ( G ClNeighbVtx a ) /\ b e. ( G ClNeighbVtx a ) /\ c e. ( G ClNeighbVtx a ) ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) -> ( ( ( f ` a ) e. ( H ClNeighbVtx ( F ` a ) ) /\ ( f ` b ) e. ( H ClNeighbVtx ( F ` a ) ) /\ ( f ` c ) e. ( H ClNeighbVtx ( F ` a ) ) ) /\ ( f " T ) = { ( f ` a ) , ( f ` b ) , ( f ` c ) } /\ ( # ` ( f " T ) ) = 3 ) ) ) |
|
| 78 | 42 76 77 | sylc | |- ( ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) ) /\ ( ( g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` a ) ) } /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ( f " i ) = ( g ` i ) ) /\ f : ( G ClNeighbVtx a ) -1-1-onto-> ( H ClNeighbVtx ( F ` a ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) -> ( ( ( f ` a ) e. ( H ClNeighbVtx ( F ` a ) ) /\ ( f ` b ) e. ( H ClNeighbVtx ( F ` a ) ) /\ ( f ` c ) e. ( H ClNeighbVtx ( F ` a ) ) ) /\ ( f " T ) = { ( f ` a ) , ( f ` b ) , ( f ` c ) } /\ ( # ` ( f " T ) ) = 3 ) ) |
| 79 | tpeq1 | |- ( x = ( f ` a ) -> { x , y , z } = { ( f ` a ) , y , z } ) |
|
| 80 | 79 | eqeq2d | |- ( x = ( f ` a ) -> ( { ( f ` a ) , ( f ` b ) , ( f ` c ) } = { x , y , z } <-> { ( f ` a ) , ( f ` b ) , ( f ` c ) } = { ( f ` a ) , y , z } ) ) |
| 81 | preq1 | |- ( x = ( f ` a ) -> { x , y } = { ( f ` a ) , y } ) |
|
| 82 | 81 | eleq1d | |- ( x = ( f ` a ) -> ( { x , y } e. ( Edg ` H ) <-> { ( f ` a ) , y } e. ( Edg ` H ) ) ) |
| 83 | preq1 | |- ( x = ( f ` a ) -> { x , z } = { ( f ` a ) , z } ) |
|
| 84 | 83 | eleq1d | |- ( x = ( f ` a ) -> ( { x , z } e. ( Edg ` H ) <-> { ( f ` a ) , z } e. ( Edg ` H ) ) ) |
| 85 | 82 84 | 3anbi12d | |- ( x = ( f ` a ) -> ( ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) <-> ( { ( f ` a ) , y } e. ( Edg ` H ) /\ { ( f ` a ) , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) |
| 86 | 80 85 | 3anbi13d | |- ( x = ( f ` a ) -> ( ( { ( f ` a ) , ( f ` b ) , ( f ` c ) } = { x , y , z } /\ ( # ` { ( f ` a ) , ( f ` b ) , ( f ` c ) } ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) <-> ( { ( f ` a ) , ( f ` b ) , ( f ` c ) } = { ( f ` a ) , y , z } /\ ( # ` { ( f ` a ) , ( f ` b ) , ( f ` c ) } ) = 3 /\ ( { ( f ` a ) , y } e. ( Edg ` H ) /\ { ( f ` a ) , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) ) |
| 87 | tpeq2 | |- ( y = ( f ` b ) -> { ( f ` a ) , y , z } = { ( f ` a ) , ( f ` b ) , z } ) |
|
| 88 | 87 | eqeq2d | |- ( y = ( f ` b ) -> ( { ( f ` a ) , ( f ` b ) , ( f ` c ) } = { ( f ` a ) , y , z } <-> { ( f ` a ) , ( f ` b ) , ( f ` c ) } = { ( f ` a ) , ( f ` b ) , z } ) ) |
| 89 | preq2 | |- ( y = ( f ` b ) -> { ( f ` a ) , y } = { ( f ` a ) , ( f ` b ) } ) |
|
| 90 | 89 | eleq1d | |- ( y = ( f ` b ) -> ( { ( f ` a ) , y } e. ( Edg ` H ) <-> { ( f ` a ) , ( f ` b ) } e. ( Edg ` H ) ) ) |
| 91 | preq1 | |- ( y = ( f ` b ) -> { y , z } = { ( f ` b ) , z } ) |
|
| 92 | 91 | eleq1d | |- ( y = ( f ` b ) -> ( { y , z } e. ( Edg ` H ) <-> { ( f ` b ) , z } e. ( Edg ` H ) ) ) |
| 93 | 90 92 | 3anbi13d | |- ( y = ( f ` b ) -> ( ( { ( f ` a ) , y } e. ( Edg ` H ) /\ { ( f ` a ) , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) <-> ( { ( f ` a ) , ( f ` b ) } e. ( Edg ` H ) /\ { ( f ` a ) , z } e. ( Edg ` H ) /\ { ( f ` b ) , z } e. ( Edg ` H ) ) ) ) |
| 94 | 88 93 | 3anbi13d | |- ( y = ( f ` b ) -> ( ( { ( f ` a ) , ( f ` b ) , ( f ` c ) } = { ( f ` a ) , y , z } /\ ( # ` { ( f ` a ) , ( f ` b ) , ( f ` c ) } ) = 3 /\ ( { ( f ` a ) , y } e. ( Edg ` H ) /\ { ( f ` a ) , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) <-> ( { ( f ` a ) , ( f ` b ) , ( f ` c ) } = { ( f ` a ) , ( f ` b ) , z } /\ ( # ` { ( f ` a ) , ( f ` b ) , ( f ` c ) } ) = 3 /\ ( { ( f ` a ) , ( f ` b ) } e. ( Edg ` H ) /\ { ( f ` a ) , z } e. ( Edg ` H ) /\ { ( f ` b ) , z } e. ( Edg ` H ) ) ) ) ) |
| 95 | tpeq3 | |- ( z = ( f ` c ) -> { ( f ` a ) , ( f ` b ) , z } = { ( f ` a ) , ( f ` b ) , ( f ` c ) } ) |
|
| 96 | 95 | eqeq2d | |- ( z = ( f ` c ) -> ( { ( f ` a ) , ( f ` b ) , ( f ` c ) } = { ( f ` a ) , ( f ` b ) , z } <-> { ( f ` a ) , ( f ` b ) , ( f ` c ) } = { ( f ` a ) , ( f ` b ) , ( f ` c ) } ) ) |
| 97 | preq2 | |- ( z = ( f ` c ) -> { ( f ` a ) , z } = { ( f ` a ) , ( f ` c ) } ) |
|
| 98 | 97 | eleq1d | |- ( z = ( f ` c ) -> ( { ( f ` a ) , z } e. ( Edg ` H ) <-> { ( f ` a ) , ( f ` c ) } e. ( Edg ` H ) ) ) |
| 99 | preq2 | |- ( z = ( f ` c ) -> { ( f ` b ) , z } = { ( f ` b ) , ( f ` c ) } ) |
|
| 100 | 99 | eleq1d | |- ( z = ( f ` c ) -> ( { ( f ` b ) , z } e. ( Edg ` H ) <-> { ( f ` b ) , ( f ` c ) } e. ( Edg ` H ) ) ) |
| 101 | 98 100 | 3anbi23d | |- ( z = ( f ` c ) -> ( ( { ( f ` a ) , ( f ` b ) } e. ( Edg ` H ) /\ { ( f ` a ) , z } e. ( Edg ` H ) /\ { ( f ` b ) , z } e. ( Edg ` H ) ) <-> ( { ( f ` a ) , ( f ` b ) } e. ( Edg ` H ) /\ { ( f ` a ) , ( f ` c ) } e. ( Edg ` H ) /\ { ( f ` b ) , ( f ` c ) } e. ( Edg ` H ) ) ) ) |
| 102 | 96 101 | 3anbi13d | |- ( z = ( f ` c ) -> ( ( { ( f ` a ) , ( f ` b ) , ( f ` c ) } = { ( f ` a ) , ( f ` b ) , z } /\ ( # ` { ( f ` a ) , ( f ` b ) , ( f ` c ) } ) = 3 /\ ( { ( f ` a ) , ( f ` b ) } e. ( Edg ` H ) /\ { ( f ` a ) , z } e. ( Edg ` H ) /\ { ( f ` b ) , z } e. ( Edg ` H ) ) ) <-> ( { ( f ` a ) , ( f ` b ) , ( f ` c ) } = { ( f ` a ) , ( f ` b ) , ( f ` c ) } /\ ( # ` { ( f ` a ) , ( f ` b ) , ( f ` c ) } ) = 3 /\ ( { ( f ` a ) , ( f ` b ) } e. ( Edg ` H ) /\ { ( f ` a ) , ( f ` c ) } e. ( Edg ` H ) /\ { ( f ` b ) , ( f ` c ) } e. ( Edg ` H ) ) ) ) ) |
| 103 | 10 | clnbgrisvtx | |- ( ( f ` a ) e. ( H ClNeighbVtx ( F ` a ) ) -> ( f ` a ) e. ( Vtx ` H ) ) |
| 104 | 103 | 3ad2ant1 | |- ( ( ( f ` a ) e. ( H ClNeighbVtx ( F ` a ) ) /\ ( f ` b ) e. ( H ClNeighbVtx ( F ` a ) ) /\ ( f ` c ) e. ( H ClNeighbVtx ( F ` a ) ) ) -> ( f ` a ) e. ( Vtx ` H ) ) |
| 105 | 104 | 3ad2ant1 | |- ( ( ( ( f ` a ) e. ( H ClNeighbVtx ( F ` a ) ) /\ ( f ` b ) e. ( H ClNeighbVtx ( F ` a ) ) /\ ( f ` c ) e. ( H ClNeighbVtx ( F ` a ) ) ) /\ ( f " T ) = { ( f ` a ) , ( f ` b ) , ( f ` c ) } /\ ( # ` ( f " T ) ) = 3 ) -> ( f ` a ) e. ( Vtx ` H ) ) |
| 106 | 105 | adantl | |- ( ( ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) ) /\ ( ( g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` a ) ) } /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ( f " i ) = ( g ` i ) ) /\ f : ( G ClNeighbVtx a ) -1-1-onto-> ( H ClNeighbVtx ( F ` a ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) /\ ( ( ( f ` a ) e. ( H ClNeighbVtx ( F ` a ) ) /\ ( f ` b ) e. ( H ClNeighbVtx ( F ` a ) ) /\ ( f ` c ) e. ( H ClNeighbVtx ( F ` a ) ) ) /\ ( f " T ) = { ( f ` a ) , ( f ` b ) , ( f ` c ) } /\ ( # ` ( f " T ) ) = 3 ) ) -> ( f ` a ) e. ( Vtx ` H ) ) |
| 107 | 10 | clnbgrisvtx | |- ( ( f ` b ) e. ( H ClNeighbVtx ( F ` a ) ) -> ( f ` b ) e. ( Vtx ` H ) ) |
| 108 | 107 | 3ad2ant2 | |- ( ( ( f ` a ) e. ( H ClNeighbVtx ( F ` a ) ) /\ ( f ` b ) e. ( H ClNeighbVtx ( F ` a ) ) /\ ( f ` c ) e. ( H ClNeighbVtx ( F ` a ) ) ) -> ( f ` b ) e. ( Vtx ` H ) ) |
| 109 | 108 | 3ad2ant1 | |- ( ( ( ( f ` a ) e. ( H ClNeighbVtx ( F ` a ) ) /\ ( f ` b ) e. ( H ClNeighbVtx ( F ` a ) ) /\ ( f ` c ) e. ( H ClNeighbVtx ( F ` a ) ) ) /\ ( f " T ) = { ( f ` a ) , ( f ` b ) , ( f ` c ) } /\ ( # ` ( f " T ) ) = 3 ) -> ( f ` b ) e. ( Vtx ` H ) ) |
| 110 | 109 | adantl | |- ( ( ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) ) /\ ( ( g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` a ) ) } /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ( f " i ) = ( g ` i ) ) /\ f : ( G ClNeighbVtx a ) -1-1-onto-> ( H ClNeighbVtx ( F ` a ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) /\ ( ( ( f ` a ) e. ( H ClNeighbVtx ( F ` a ) ) /\ ( f ` b ) e. ( H ClNeighbVtx ( F ` a ) ) /\ ( f ` c ) e. ( H ClNeighbVtx ( F ` a ) ) ) /\ ( f " T ) = { ( f ` a ) , ( f ` b ) , ( f ` c ) } /\ ( # ` ( f " T ) ) = 3 ) ) -> ( f ` b ) e. ( Vtx ` H ) ) |
| 111 | 10 | clnbgrisvtx | |- ( ( f ` c ) e. ( H ClNeighbVtx ( F ` a ) ) -> ( f ` c ) e. ( Vtx ` H ) ) |
| 112 | 111 | 3ad2ant3 | |- ( ( ( f ` a ) e. ( H ClNeighbVtx ( F ` a ) ) /\ ( f ` b ) e. ( H ClNeighbVtx ( F ` a ) ) /\ ( f ` c ) e. ( H ClNeighbVtx ( F ` a ) ) ) -> ( f ` c ) e. ( Vtx ` H ) ) |
| 113 | 112 | 3ad2ant1 | |- ( ( ( ( f ` a ) e. ( H ClNeighbVtx ( F ` a ) ) /\ ( f ` b ) e. ( H ClNeighbVtx ( F ` a ) ) /\ ( f ` c ) e. ( H ClNeighbVtx ( F ` a ) ) ) /\ ( f " T ) = { ( f ` a ) , ( f ` b ) , ( f ` c ) } /\ ( # ` ( f " T ) ) = 3 ) -> ( f ` c ) e. ( Vtx ` H ) ) |
| 114 | 113 | adantl | |- ( ( ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) ) /\ ( ( g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` a ) ) } /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ( f " i ) = ( g ` i ) ) /\ f : ( G ClNeighbVtx a ) -1-1-onto-> ( H ClNeighbVtx ( F ` a ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) /\ ( ( ( f ` a ) e. ( H ClNeighbVtx ( F ` a ) ) /\ ( f ` b ) e. ( H ClNeighbVtx ( F ` a ) ) /\ ( f ` c ) e. ( H ClNeighbVtx ( F ` a ) ) ) /\ ( f " T ) = { ( f ` a ) , ( f ` b ) , ( f ` c ) } /\ ( # ` ( f " T ) ) = 3 ) ) -> ( f ` c ) e. ( Vtx ` H ) ) |
| 115 | eqidd | |- ( ( ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) ) /\ ( ( g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` a ) ) } /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ( f " i ) = ( g ` i ) ) /\ f : ( G ClNeighbVtx a ) -1-1-onto-> ( H ClNeighbVtx ( F ` a ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) /\ ( ( ( f ` a ) e. ( H ClNeighbVtx ( F ` a ) ) /\ ( f ` b ) e. ( H ClNeighbVtx ( F ` a ) ) /\ ( f ` c ) e. ( H ClNeighbVtx ( F ` a ) ) ) /\ ( f " T ) = { ( f ` a ) , ( f ` b ) , ( f ` c ) } /\ ( # ` ( f " T ) ) = 3 ) ) -> { ( f ` a ) , ( f ` b ) , ( f ` c ) } = { ( f ` a ) , ( f ` b ) , ( f ` c ) } ) |
|
| 116 | fveq2 | |- ( { ( f ` a ) , ( f ` b ) , ( f ` c ) } = ( f " T ) -> ( # ` { ( f ` a ) , ( f ` b ) , ( f ` c ) } ) = ( # ` ( f " T ) ) ) |
|
| 117 | 116 | eqcoms | |- ( ( f " T ) = { ( f ` a ) , ( f ` b ) , ( f ` c ) } -> ( # ` { ( f ` a ) , ( f ` b ) , ( f ` c ) } ) = ( # ` ( f " T ) ) ) |
| 118 | 117 | 3ad2ant2 | |- ( ( ( ( f ` a ) e. ( H ClNeighbVtx ( F ` a ) ) /\ ( f ` b ) e. ( H ClNeighbVtx ( F ` a ) ) /\ ( f ` c ) e. ( H ClNeighbVtx ( F ` a ) ) ) /\ ( f " T ) = { ( f ` a ) , ( f ` b ) , ( f ` c ) } /\ ( # ` ( f " T ) ) = 3 ) -> ( # ` { ( f ` a ) , ( f ` b ) , ( f ` c ) } ) = ( # ` ( f " T ) ) ) |
| 119 | simp3 | |- ( ( ( ( f ` a ) e. ( H ClNeighbVtx ( F ` a ) ) /\ ( f ` b ) e. ( H ClNeighbVtx ( F ` a ) ) /\ ( f ` c ) e. ( H ClNeighbVtx ( F ` a ) ) ) /\ ( f " T ) = { ( f ` a ) , ( f ` b ) , ( f ` c ) } /\ ( # ` ( f " T ) ) = 3 ) -> ( # ` ( f " T ) ) = 3 ) |
|
| 120 | 118 119 | eqtrd | |- ( ( ( ( f ` a ) e. ( H ClNeighbVtx ( F ` a ) ) /\ ( f ` b ) e. ( H ClNeighbVtx ( F ` a ) ) /\ ( f ` c ) e. ( H ClNeighbVtx ( F ` a ) ) ) /\ ( f " T ) = { ( f ` a ) , ( f ` b ) , ( f ` c ) } /\ ( # ` ( f " T ) ) = 3 ) -> ( # ` { ( f ` a ) , ( f ` b ) , ( f ` c ) } ) = 3 ) |
| 121 | 120 | adantl | |- ( ( ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) ) /\ ( ( g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` a ) ) } /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ( f " i ) = ( g ` i ) ) /\ f : ( G ClNeighbVtx a ) -1-1-onto-> ( H ClNeighbVtx ( F ` a ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) /\ ( ( ( f ` a ) e. ( H ClNeighbVtx ( F ` a ) ) /\ ( f ` b ) e. ( H ClNeighbVtx ( F ` a ) ) /\ ( f ` c ) e. ( H ClNeighbVtx ( F ` a ) ) ) /\ ( f " T ) = { ( f ` a ) , ( f ` b ) , ( f ` c ) } /\ ( # ` ( f " T ) ) = 3 ) ) -> ( # ` { ( f ` a ) , ( f ` b ) , ( f ` c ) } ) = 3 ) |
| 122 | uspgruhgr | |- ( G e. USPGraph -> G e. UHGraph ) |
|
| 123 | 1 122 | syl | |- ( ph -> G e. UHGraph ) |
| 124 | 123 | adantr | |- ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) ) -> G e. UHGraph ) |
| 125 | simp3 | |- ( ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) -> ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) |
|
| 126 | 124 125 | anim12i | |- ( ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) -> ( G e. UHGraph /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) |
| 127 | 126 | 3adant2 | |- ( ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) ) /\ ( ( g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` a ) ) } /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ( f " i ) = ( g ` i ) ) /\ f : ( G ClNeighbVtx a ) -1-1-onto-> ( H ClNeighbVtx ( F ` a ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) -> ( G e. UHGraph /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) |
| 128 | 127 | adantr | |- ( ( ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) ) /\ ( ( g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` a ) ) } /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ( f " i ) = ( g ` i ) ) /\ f : ( G ClNeighbVtx a ) -1-1-onto-> ( H ClNeighbVtx ( F ` a ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) /\ ( ( ( f ` a ) e. ( H ClNeighbVtx ( F ` a ) ) /\ ( f ` b ) e. ( H ClNeighbVtx ( F ` a ) ) /\ ( f ` c ) e. ( H ClNeighbVtx ( F ` a ) ) ) /\ ( f " T ) = { ( f ` a ) , ( f ` b ) , ( f ` c ) } /\ ( # ` ( f " T ) ) = 3 ) ) -> ( G e. UHGraph /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) |
| 129 | eqid | |- ( G ClNeighbVtx a ) = ( G ClNeighbVtx a ) |
|
| 130 | eqid | |- { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } = { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } |
|
| 131 | 5 129 6 130 | grlimgrtrilem1 | |- ( ( G e. UHGraph /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) -> ( { a , b } e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } /\ { a , c } e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } /\ { b , c } e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ) ) |
| 132 | 128 131 | syl | |- ( ( ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) ) /\ ( ( g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` a ) ) } /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ( f " i ) = ( g ` i ) ) /\ f : ( G ClNeighbVtx a ) -1-1-onto-> ( H ClNeighbVtx ( F ` a ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) /\ ( ( ( f ` a ) e. ( H ClNeighbVtx ( F ` a ) ) /\ ( f ` b ) e. ( H ClNeighbVtx ( F ` a ) ) /\ ( f ` c ) e. ( H ClNeighbVtx ( F ` a ) ) ) /\ ( f " T ) = { ( f ` a ) , ( f ` b ) , ( f ` c ) } /\ ( # ` ( f " T ) ) = 3 ) ) -> ( { a , b } e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } /\ { a , c } e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } /\ { b , c } e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ) ) |
| 133 | eqid | |- ( H ClNeighbVtx ( F ` a ) ) = ( H ClNeighbVtx ( F ` a ) ) |
|
| 134 | eqid | |- { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` a ) ) } = { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` a ) ) } |
|
| 135 | 5 129 6 130 133 13 134 | grlimgrtrilem2 | |- ( ( ( f : ( G ClNeighbVtx a ) -1-1-onto-> ( H ClNeighbVtx ( F ` a ) ) /\ g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` a ) ) } ) /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ( f " i ) = ( g ` i ) /\ { a , b } e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ) -> { ( f ` a ) , ( f ` b ) } e. ( Edg ` H ) ) |
| 136 | 135 | 3expia | |- ( ( ( f : ( G ClNeighbVtx a ) -1-1-onto-> ( H ClNeighbVtx ( F ` a ) ) /\ g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` a ) ) } ) /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ( f " i ) = ( g ` i ) ) -> ( { a , b } e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } -> { ( f ` a ) , ( f ` b ) } e. ( Edg ` H ) ) ) |
| 137 | 5 129 6 130 133 13 134 | grlimgrtrilem2 | |- ( ( ( f : ( G ClNeighbVtx a ) -1-1-onto-> ( H ClNeighbVtx ( F ` a ) ) /\ g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` a ) ) } ) /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ( f " i ) = ( g ` i ) /\ { a , c } e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ) -> { ( f ` a ) , ( f ` c ) } e. ( Edg ` H ) ) |
| 138 | 137 | 3expia | |- ( ( ( f : ( G ClNeighbVtx a ) -1-1-onto-> ( H ClNeighbVtx ( F ` a ) ) /\ g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` a ) ) } ) /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ( f " i ) = ( g ` i ) ) -> ( { a , c } e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } -> { ( f ` a ) , ( f ` c ) } e. ( Edg ` H ) ) ) |
| 139 | 5 129 6 130 133 13 134 | grlimgrtrilem2 | |- ( ( ( f : ( G ClNeighbVtx a ) -1-1-onto-> ( H ClNeighbVtx ( F ` a ) ) /\ g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` a ) ) } ) /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ( f " i ) = ( g ` i ) /\ { b , c } e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ) -> { ( f ` b ) , ( f ` c ) } e. ( Edg ` H ) ) |
| 140 | 139 | 3expia | |- ( ( ( f : ( G ClNeighbVtx a ) -1-1-onto-> ( H ClNeighbVtx ( F ` a ) ) /\ g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` a ) ) } ) /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ( f " i ) = ( g ` i ) ) -> ( { b , c } e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } -> { ( f ` b ) , ( f ` c ) } e. ( Edg ` H ) ) ) |
| 141 | 136 138 140 | 3anim123d | |- ( ( ( f : ( G ClNeighbVtx a ) -1-1-onto-> ( H ClNeighbVtx ( F ` a ) ) /\ g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` a ) ) } ) /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ( f " i ) = ( g ` i ) ) -> ( ( { a , b } e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } /\ { a , c } e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } /\ { b , c } e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ) -> ( { ( f ` a ) , ( f ` b ) } e. ( Edg ` H ) /\ { ( f ` a ) , ( f ` c ) } e. ( Edg ` H ) /\ { ( f ` b ) , ( f ` c ) } e. ( Edg ` H ) ) ) ) |
| 142 | 141 | anasss | |- ( ( f : ( G ClNeighbVtx a ) -1-1-onto-> ( H ClNeighbVtx ( F ` a ) ) /\ ( g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` a ) ) } /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ( f " i ) = ( g ` i ) ) ) -> ( ( { a , b } e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } /\ { a , c } e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } /\ { b , c } e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ) -> ( { ( f ` a ) , ( f ` b ) } e. ( Edg ` H ) /\ { ( f ` a ) , ( f ` c ) } e. ( Edg ` H ) /\ { ( f ` b ) , ( f ` c ) } e. ( Edg ` H ) ) ) ) |
| 143 | 142 | ancoms | |- ( ( ( g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` a ) ) } /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ( f " i ) = ( g ` i ) ) /\ f : ( G ClNeighbVtx a ) -1-1-onto-> ( H ClNeighbVtx ( F ` a ) ) ) -> ( ( { a , b } e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } /\ { a , c } e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } /\ { b , c } e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ) -> ( { ( f ` a ) , ( f ` b ) } e. ( Edg ` H ) /\ { ( f ` a ) , ( f ` c ) } e. ( Edg ` H ) /\ { ( f ` b ) , ( f ` c ) } e. ( Edg ` H ) ) ) ) |
| 144 | 143 | 3adant3 | |- ( ( ( g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` a ) ) } /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ( f " i ) = ( g ` i ) ) /\ f : ( G ClNeighbVtx a ) -1-1-onto-> ( H ClNeighbVtx ( F ` a ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) -> ( ( { a , b } e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } /\ { a , c } e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } /\ { b , c } e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ) -> ( { ( f ` a ) , ( f ` b ) } e. ( Edg ` H ) /\ { ( f ` a ) , ( f ` c ) } e. ( Edg ` H ) /\ { ( f ` b ) , ( f ` c ) } e. ( Edg ` H ) ) ) ) |
| 145 | 144 | 3ad2ant2 | |- ( ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) ) /\ ( ( g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` a ) ) } /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ( f " i ) = ( g ` i ) ) /\ f : ( G ClNeighbVtx a ) -1-1-onto-> ( H ClNeighbVtx ( F ` a ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) -> ( ( { a , b } e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } /\ { a , c } e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } /\ { b , c } e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ) -> ( { ( f ` a ) , ( f ` b ) } e. ( Edg ` H ) /\ { ( f ` a ) , ( f ` c ) } e. ( Edg ` H ) /\ { ( f ` b ) , ( f ` c ) } e. ( Edg ` H ) ) ) ) |
| 146 | 145 | adantr | |- ( ( ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) ) /\ ( ( g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` a ) ) } /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ( f " i ) = ( g ` i ) ) /\ f : ( G ClNeighbVtx a ) -1-1-onto-> ( H ClNeighbVtx ( F ` a ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) /\ ( ( ( f ` a ) e. ( H ClNeighbVtx ( F ` a ) ) /\ ( f ` b ) e. ( H ClNeighbVtx ( F ` a ) ) /\ ( f ` c ) e. ( H ClNeighbVtx ( F ` a ) ) ) /\ ( f " T ) = { ( f ` a ) , ( f ` b ) , ( f ` c ) } /\ ( # ` ( f " T ) ) = 3 ) ) -> ( ( { a , b } e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } /\ { a , c } e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } /\ { b , c } e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ) -> ( { ( f ` a ) , ( f ` b ) } e. ( Edg ` H ) /\ { ( f ` a ) , ( f ` c ) } e. ( Edg ` H ) /\ { ( f ` b ) , ( f ` c ) } e. ( Edg ` H ) ) ) ) |
| 147 | 132 146 | mpd | |- ( ( ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) ) /\ ( ( g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` a ) ) } /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ( f " i ) = ( g ` i ) ) /\ f : ( G ClNeighbVtx a ) -1-1-onto-> ( H ClNeighbVtx ( F ` a ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) /\ ( ( ( f ` a ) e. ( H ClNeighbVtx ( F ` a ) ) /\ ( f ` b ) e. ( H ClNeighbVtx ( F ` a ) ) /\ ( f ` c ) e. ( H ClNeighbVtx ( F ` a ) ) ) /\ ( f " T ) = { ( f ` a ) , ( f ` b ) , ( f ` c ) } /\ ( # ` ( f " T ) ) = 3 ) ) -> ( { ( f ` a ) , ( f ` b ) } e. ( Edg ` H ) /\ { ( f ` a ) , ( f ` c ) } e. ( Edg ` H ) /\ { ( f ` b ) , ( f ` c ) } e. ( Edg ` H ) ) ) |
| 148 | 115 121 147 | 3jca | |- ( ( ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) ) /\ ( ( g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` a ) ) } /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ( f " i ) = ( g ` i ) ) /\ f : ( G ClNeighbVtx a ) -1-1-onto-> ( H ClNeighbVtx ( F ` a ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) /\ ( ( ( f ` a ) e. ( H ClNeighbVtx ( F ` a ) ) /\ ( f ` b ) e. ( H ClNeighbVtx ( F ` a ) ) /\ ( f ` c ) e. ( H ClNeighbVtx ( F ` a ) ) ) /\ ( f " T ) = { ( f ` a ) , ( f ` b ) , ( f ` c ) } /\ ( # ` ( f " T ) ) = 3 ) ) -> ( { ( f ` a ) , ( f ` b ) , ( f ` c ) } = { ( f ` a ) , ( f ` b ) , ( f ` c ) } /\ ( # ` { ( f ` a ) , ( f ` b ) , ( f ` c ) } ) = 3 /\ ( { ( f ` a ) , ( f ` b ) } e. ( Edg ` H ) /\ { ( f ` a ) , ( f ` c ) } e. ( Edg ` H ) /\ { ( f ` b ) , ( f ` c ) } e. ( Edg ` H ) ) ) ) |
| 149 | 86 94 102 106 110 114 148 | 3rspcedvdw | |- ( ( ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) ) /\ ( ( g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` a ) ) } /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ( f " i ) = ( g ` i ) ) /\ f : ( G ClNeighbVtx a ) -1-1-onto-> ( H ClNeighbVtx ( F ` a ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) /\ ( ( ( f ` a ) e. ( H ClNeighbVtx ( F ` a ) ) /\ ( f ` b ) e. ( H ClNeighbVtx ( F ` a ) ) /\ ( f ` c ) e. ( H ClNeighbVtx ( F ` a ) ) ) /\ ( f " T ) = { ( f ` a ) , ( f ` b ) , ( f ` c ) } /\ ( # ` ( f " T ) ) = 3 ) ) -> E. x e. ( Vtx ` H ) E. y e. ( Vtx ` H ) E. z e. ( Vtx ` H ) ( { ( f ` a ) , ( f ` b ) , ( f ` c ) } = { x , y , z } /\ ( # ` { ( f ` a ) , ( f ` b ) , ( f ` c ) } ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) |
| 150 | 78 149 | mpdan | |- ( ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) ) /\ ( ( g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` a ) ) } /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ( f " i ) = ( g ` i ) ) /\ f : ( G ClNeighbVtx a ) -1-1-onto-> ( H ClNeighbVtx ( F ` a ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) -> E. x e. ( Vtx ` H ) E. y e. ( Vtx ` H ) E. z e. ( Vtx ` H ) ( { ( f ` a ) , ( f ` b ) , ( f ` c ) } = { x , y , z } /\ ( # ` { ( f ` a ) , ( f ` b ) , ( f ` c ) } ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) |
| 151 | eqeq1 | |- ( t = { ( f ` a ) , ( f ` b ) , ( f ` c ) } -> ( t = { x , y , z } <-> { ( f ` a ) , ( f ` b ) , ( f ` c ) } = { x , y , z } ) ) |
|
| 152 | fveqeq2 | |- ( t = { ( f ` a ) , ( f ` b ) , ( f ` c ) } -> ( ( # ` t ) = 3 <-> ( # ` { ( f ` a ) , ( f ` b ) , ( f ` c ) } ) = 3 ) ) |
|
| 153 | 151 152 | 3anbi12d | |- ( t = { ( f ` a ) , ( f ` b ) , ( f ` c ) } -> ( ( t = { x , y , z } /\ ( # ` t ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) <-> ( { ( f ` a ) , ( f ` b ) , ( f ` c ) } = { x , y , z } /\ ( # ` { ( f ` a ) , ( f ` b ) , ( f ` c ) } ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) ) |
| 154 | 153 | rexbidv | |- ( t = { ( f ` a ) , ( f ` b ) , ( f ` c ) } -> ( E. z e. ( Vtx ` H ) ( t = { x , y , z } /\ ( # ` t ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) <-> E. z e. ( Vtx ` H ) ( { ( f ` a ) , ( f ` b ) , ( f ` c ) } = { x , y , z } /\ ( # ` { ( f ` a ) , ( f ` b ) , ( f ` c ) } ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) ) |
| 155 | 154 | 2rexbidv | |- ( t = { ( f ` a ) , ( f ` b ) , ( f ` c ) } -> ( E. x e. ( Vtx ` H ) E. y e. ( Vtx ` H ) E. z e. ( Vtx ` H ) ( t = { x , y , z } /\ ( # ` t ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) <-> E. x e. ( Vtx ` H ) E. y e. ( Vtx ` H ) E. z e. ( Vtx ` H ) ( { ( f ` a ) , ( f ` b ) , ( f ` c ) } = { x , y , z } /\ ( # ` { ( f ` a ) , ( f ` b ) , ( f ` c ) } ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) ) |
| 156 | 39 150 155 | spcedv | |- ( ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) ) /\ ( ( g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` a ) ) } /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ( f " i ) = ( g ` i ) ) /\ f : ( G ClNeighbVtx a ) -1-1-onto-> ( H ClNeighbVtx ( F ` a ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) -> E. t E. x e. ( Vtx ` H ) E. y e. ( Vtx ` H ) E. z e. ( Vtx ` H ) ( t = { x , y , z } /\ ( # ` t ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) |
| 157 | 156 | 3exp | |- ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) ) -> ( ( ( g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` a ) ) } /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ( f " i ) = ( g ` i ) ) /\ f : ( G ClNeighbVtx a ) -1-1-onto-> ( H ClNeighbVtx ( F ` a ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) -> ( ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) -> E. t E. x e. ( Vtx ` H ) E. y e. ( Vtx ` H ) E. z e. ( Vtx ` H ) ( t = { x , y , z } /\ ( # ` t ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) ) ) |
| 158 | 157 | 3expd | |- ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) ) -> ( ( g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` a ) ) } /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ( f " i ) = ( g ` i ) ) -> ( f : ( G ClNeighbVtx a ) -1-1-onto-> ( H ClNeighbVtx ( F ` a ) ) -> ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) -> ( ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) -> E. t E. x e. ( Vtx ` H ) E. y e. ( Vtx ` H ) E. z e. ( Vtx ` H ) ( t = { x , y , z } /\ ( # ` t ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) ) ) ) ) |
| 159 | 158 | exlimdv | |- ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) ) -> ( E. g ( g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` a ) ) } /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ( f " i ) = ( g ` i ) ) -> ( f : ( G ClNeighbVtx a ) -1-1-onto-> ( H ClNeighbVtx ( F ` a ) ) -> ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) -> ( ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) -> E. t E. x e. ( Vtx ` H ) E. y e. ( Vtx ` H ) E. z e. ( Vtx ` H ) ( t = { x , y , z } /\ ( # ` t ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) ) ) ) ) |
| 160 | 159 | impcomd | |- ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) ) -> ( ( f : ( G ClNeighbVtx a ) -1-1-onto-> ( H ClNeighbVtx ( F ` a ) ) /\ E. g ( g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` a ) ) } /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ( f " i ) = ( g ` i ) ) ) -> ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) -> ( ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) -> E. t E. x e. ( Vtx ` H ) E. y e. ( Vtx ` H ) E. z e. ( Vtx ` H ) ( t = { x , y , z } /\ ( # ` t ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) ) ) ) |
| 161 | 160 | exlimdv | |- ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) ) -> ( E. f ( f : ( G ClNeighbVtx a ) -1-1-onto-> ( H ClNeighbVtx ( F ` a ) ) /\ E. g ( g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` a ) ) } /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx a ) } ( f " i ) = ( g ` i ) ) ) -> ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) -> ( ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) -> E. t E. x e. ( Vtx ` H ) E. y e. ( Vtx ` H ) E. z e. ( Vtx ` H ) ( t = { x , y , z } /\ ( # ` t ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) ) ) ) |
| 162 | 37 161 | syld | |- ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) ) -> ( A. v e. ( Vtx ` G ) E. f ( f : ( G ClNeighbVtx v ) -1-1-onto-> ( H ClNeighbVtx ( F ` v ) ) /\ E. g ( g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx v ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` v ) ) } /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx v ) } ( f " i ) = ( g ` i ) ) ) -> ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) -> ( ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) -> E. t E. x e. ( Vtx ` H ) E. y e. ( Vtx ` H ) E. z e. ( Vtx ` H ) ( t = { x , y , z } /\ ( # ` t ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) ) ) ) |
| 163 | 162 | com13 | |- ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) -> ( A. v e. ( Vtx ` G ) E. f ( f : ( G ClNeighbVtx v ) -1-1-onto-> ( H ClNeighbVtx ( F ` v ) ) /\ E. g ( g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx v ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` v ) ) } /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx v ) } ( f " i ) = ( g ` i ) ) ) -> ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) ) -> ( ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) -> E. t E. x e. ( Vtx ` H ) E. y e. ( Vtx ` H ) E. z e. ( Vtx ` H ) ( t = { x , y , z } /\ ( # ` t ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) ) ) ) |
| 164 | 163 | imp | |- ( ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ A. v e. ( Vtx ` G ) E. f ( f : ( G ClNeighbVtx v ) -1-1-onto-> ( H ClNeighbVtx ( F ` v ) ) /\ E. g ( g : { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx v ) } -1-1-onto-> { y e. ( Edg ` H ) | y C_ ( H ClNeighbVtx ( F ` v ) ) } /\ A. i e. { y e. ( Edg ` G ) | y C_ ( G ClNeighbVtx v ) } ( f " i ) = ( g ` i ) ) ) ) -> ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) ) -> ( ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) -> E. t E. x e. ( Vtx ` H ) E. y e. ( Vtx ` H ) E. z e. ( Vtx ` H ) ( t = { x , y , z } /\ ( # ` t ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) ) ) |
| 165 | 9 18 164 | 3syl | |- ( ph -> ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) ) -> ( ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) -> E. t E. x e. ( Vtx ` H ) E. y e. ( Vtx ` H ) E. z e. ( Vtx ` H ) ( t = { x , y , z } /\ ( # ` t ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) ) ) |
| 166 | 165 | anabsi5 | |- ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) ) -> ( ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) -> E. t E. x e. ( Vtx ` H ) E. y e. ( Vtx ` H ) E. z e. ( Vtx ` H ) ( t = { x , y , z } /\ ( # ` t ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) ) |
| 167 | 166 | rexlimdvvva | |- ( ph -> ( E. a e. ( Vtx ` G ) E. b e. ( Vtx ` G ) E. c e. ( Vtx ` G ) ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) -> E. t E. x e. ( Vtx ` H ) E. y e. ( Vtx ` H ) E. z e. ( Vtx ` H ) ( t = { x , y , z } /\ ( # ` t ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) ) |
| 168 | 8 167 | mpd | |- ( ph -> E. t E. x e. ( Vtx ` H ) E. y e. ( Vtx ` H ) E. z e. ( Vtx ` H ) ( t = { x , y , z } /\ ( # ` t ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) |
| 169 | 10 13 | isgrtri | |- ( t e. ( GrTriangles ` H ) <-> E. x e. ( Vtx ` H ) E. y e. ( Vtx ` H ) E. z e. ( Vtx ` H ) ( t = { x , y , z } /\ ( # ` t ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) |
| 170 | 169 | exbii | |- ( E. t t e. ( GrTriangles ` H ) <-> E. t E. x e. ( Vtx ` H ) E. y e. ( Vtx ` H ) E. z e. ( Vtx ` H ) ( t = { x , y , z } /\ ( # ` t ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) |
| 171 | 168 170 | sylibr | |- ( ph -> E. t t e. ( GrTriangles ` H ) ) |