This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a (not necessarily proper) unordered pair containing a vertex is an edge, the other vertex is in the closed neighborhood of the first vertex. (Contributed by AV, 23-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | predgclnbgrel.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| predgclnbgrel.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| Assertion | predgclnbgrel | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ { 𝑋 , 𝑁 } ∈ 𝐸 ) → 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | predgclnbgrel.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | predgclnbgrel.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | 3simpa | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ { 𝑋 , 𝑁 } ∈ 𝐸 ) → ( 𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) | |
| 4 | simp3 | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ { 𝑋 , 𝑁 } ∈ 𝐸 ) → { 𝑋 , 𝑁 } ∈ 𝐸 ) | |
| 5 | sseq2 | ⊢ ( 𝑒 = { 𝑋 , 𝑁 } → ( { 𝑋 , 𝑁 } ⊆ 𝑒 ↔ { 𝑋 , 𝑁 } ⊆ { 𝑋 , 𝑁 } ) ) | |
| 6 | 5 | adantl | ⊢ ( ( ( 𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ { 𝑋 , 𝑁 } ∈ 𝐸 ) ∧ 𝑒 = { 𝑋 , 𝑁 } ) → ( { 𝑋 , 𝑁 } ⊆ 𝑒 ↔ { 𝑋 , 𝑁 } ⊆ { 𝑋 , 𝑁 } ) ) |
| 7 | ssidd | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ { 𝑋 , 𝑁 } ∈ 𝐸 ) → { 𝑋 , 𝑁 } ⊆ { 𝑋 , 𝑁 } ) | |
| 8 | 4 6 7 | rspcedvd | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ { 𝑋 , 𝑁 } ∈ 𝐸 ) → ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) |
| 9 | 8 | olcd | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ { 𝑋 , 𝑁 } ∈ 𝐸 ) → ( 𝑁 = 𝑋 ∨ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) |
| 10 | 1 2 | clnbgrel | ⊢ ( 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ↔ ( ( 𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑁 = 𝑋 ∨ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) ) |
| 11 | 3 9 10 | sylanbrc | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ { 𝑋 , 𝑁 } ∈ 𝐸 ) → 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) |