This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 3 for grlimgrtri . (Contributed by AV, 24-Aug-2025) (Proof shortened by AV, 27-Dec-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grlimgrtrilem1.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| grlimgrtrilem1.n | ⊢ 𝑁 = ( 𝐺 ClNeighbVtx 𝑎 ) | ||
| grlimgrtrilem1.i | ⊢ 𝐼 = ( Edg ‘ 𝐺 ) | ||
| grlimgrtrilem1.k | ⊢ 𝐾 = { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁 } | ||
| Assertion | grlimgrtrilem1 | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) ) → ( { 𝑎 , 𝑏 } ∈ 𝐾 ∧ { 𝑎 , 𝑐 } ∈ 𝐾 ∧ { 𝑏 , 𝑐 } ∈ 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grlimgrtrilem1.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | grlimgrtrilem1.n | ⊢ 𝑁 = ( 𝐺 ClNeighbVtx 𝑎 ) | |
| 3 | grlimgrtrilem1.i | ⊢ 𝐼 = ( Edg ‘ 𝐺 ) | |
| 4 | grlimgrtrilem1.k | ⊢ 𝐾 = { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁 } | |
| 5 | simpl | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) ) → 𝐺 ∈ UHGraph ) | |
| 6 | simp1 | ⊢ ( ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) → { 𝑎 , 𝑏 } ∈ 𝐼 ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) ) → { 𝑎 , 𝑏 } ∈ 𝐼 ) |
| 8 | vex | ⊢ 𝑎 ∈ V | |
| 9 | 8 | prid1 | ⊢ 𝑎 ∈ { 𝑎 , 𝑏 } |
| 10 | 9 | a1i | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) ) → 𝑎 ∈ { 𝑎 , 𝑏 } ) |
| 11 | 2 3 4 | clnbgrvtxedg | ⊢ ( ( 𝐺 ∈ UHGraph ∧ { 𝑎 , 𝑏 } ∈ 𝐼 ∧ 𝑎 ∈ { 𝑎 , 𝑏 } ) → { 𝑎 , 𝑏 } ∈ 𝐾 ) |
| 12 | 5 7 10 11 | syl3anc | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) ) → { 𝑎 , 𝑏 } ∈ 𝐾 ) |
| 13 | simp2 | ⊢ ( ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) → { 𝑎 , 𝑐 } ∈ 𝐼 ) | |
| 14 | 13 | adantl | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) ) → { 𝑎 , 𝑐 } ∈ 𝐼 ) |
| 15 | 8 | prid1 | ⊢ 𝑎 ∈ { 𝑎 , 𝑐 } |
| 16 | 15 | a1i | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) ) → 𝑎 ∈ { 𝑎 , 𝑐 } ) |
| 17 | 2 3 4 | clnbgrvtxedg | ⊢ ( ( 𝐺 ∈ UHGraph ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ 𝑎 ∈ { 𝑎 , 𝑐 } ) → { 𝑎 , 𝑐 } ∈ 𝐾 ) |
| 18 | 5 14 16 17 | syl3anc | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) ) → { 𝑎 , 𝑐 } ∈ 𝐾 ) |
| 19 | simpr3 | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) ) → { 𝑏 , 𝑐 } ∈ 𝐼 ) | |
| 20 | 9 | a1i | ⊢ ( ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) → 𝑎 ∈ { 𝑎 , 𝑏 } ) |
| 21 | vex | ⊢ 𝑏 ∈ V | |
| 22 | 21 | prid2 | ⊢ 𝑏 ∈ { 𝑎 , 𝑏 } |
| 23 | 22 | a1i | ⊢ ( ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) → 𝑏 ∈ { 𝑎 , 𝑏 } ) |
| 24 | 6 20 23 | 3jca | ⊢ ( ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) → ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ 𝑎 ∈ { 𝑎 , 𝑏 } ∧ 𝑏 ∈ { 𝑎 , 𝑏 } ) ) |
| 25 | 3 2 | clnbgredg | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ 𝑎 ∈ { 𝑎 , 𝑏 } ∧ 𝑏 ∈ { 𝑎 , 𝑏 } ) ) → 𝑏 ∈ 𝑁 ) |
| 26 | 24 25 | sylan2 | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) ) → 𝑏 ∈ 𝑁 ) |
| 27 | 15 | a1i | ⊢ ( ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) → 𝑎 ∈ { 𝑎 , 𝑐 } ) |
| 28 | vex | ⊢ 𝑐 ∈ V | |
| 29 | 28 | prid2 | ⊢ 𝑐 ∈ { 𝑎 , 𝑐 } |
| 30 | 29 | a1i | ⊢ ( ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) → 𝑐 ∈ { 𝑎 , 𝑐 } ) |
| 31 | 13 27 30 | 3jca | ⊢ ( ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) → ( { 𝑎 , 𝑐 } ∈ 𝐼 ∧ 𝑎 ∈ { 𝑎 , 𝑐 } ∧ 𝑐 ∈ { 𝑎 , 𝑐 } ) ) |
| 32 | 3 2 | clnbgredg | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑐 } ∈ 𝐼 ∧ 𝑎 ∈ { 𝑎 , 𝑐 } ∧ 𝑐 ∈ { 𝑎 , 𝑐 } ) ) → 𝑐 ∈ 𝑁 ) |
| 33 | 31 32 | sylan2 | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) ) → 𝑐 ∈ 𝑁 ) |
| 34 | 26 33 | prssd | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) ) → { 𝑏 , 𝑐 } ⊆ 𝑁 ) |
| 35 | sseq1 | ⊢ ( 𝑥 = { 𝑏 , 𝑐 } → ( 𝑥 ⊆ 𝑁 ↔ { 𝑏 , 𝑐 } ⊆ 𝑁 ) ) | |
| 36 | 35 4 | elrab2 | ⊢ ( { 𝑏 , 𝑐 } ∈ 𝐾 ↔ ( { 𝑏 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ⊆ 𝑁 ) ) |
| 37 | 19 34 36 | sylanbrc | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) ) → { 𝑏 , 𝑐 } ∈ 𝐾 ) |
| 38 | 12 18 37 | 3jca | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) ) → ( { 𝑎 , 𝑏 } ∈ 𝐾 ∧ { 𝑎 , 𝑐 } ∈ 𝐾 ∧ { 𝑏 , 𝑐 } ∈ 𝐾 ) ) |