This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties of a local isomorphism of simple pseudographs. (Contributed by AV, 17-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgrlimprop.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| usgrlimprop.w | ⊢ 𝑊 = ( Vtx ‘ 𝐻 ) | ||
| usgrlimprop.n | ⊢ 𝑁 = ( 𝐺 ClNeighbVtx 𝑣 ) | ||
| usgrlimprop.m | ⊢ 𝑀 = ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) | ||
| usgrlimprop.i | ⊢ 𝐼 = ( Edg ‘ 𝐺 ) | ||
| usgrlimprop.j | ⊢ 𝐽 = ( Edg ‘ 𝐻 ) | ||
| usgrlimprop.k | ⊢ 𝐾 = { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁 } | ||
| usgrlimprop.l | ⊢ 𝐿 = { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀 } | ||
| Assertion | usgrlimprop | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) → ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrlimprop.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | usgrlimprop.w | ⊢ 𝑊 = ( Vtx ‘ 𝐻 ) | |
| 3 | usgrlimprop.n | ⊢ 𝑁 = ( 𝐺 ClNeighbVtx 𝑣 ) | |
| 4 | usgrlimprop.m | ⊢ 𝑀 = ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) | |
| 5 | usgrlimprop.i | ⊢ 𝐼 = ( Edg ‘ 𝐺 ) | |
| 6 | usgrlimprop.j | ⊢ 𝐽 = ( Edg ‘ 𝐻 ) | |
| 7 | usgrlimprop.k | ⊢ 𝐾 = { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁 } | |
| 8 | usgrlimprop.l | ⊢ 𝐿 = { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀 } | |
| 9 | simp3 | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) → 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) | |
| 10 | 1 2 3 4 5 6 7 8 | uspgrlim | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) → ( 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ↔ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ) ) ) |
| 11 | 9 10 | mpbid | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) → ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ) ) |