This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Under certain conditions, a GCH-set can demonstrate trichotomy of dominance. Lemma for gchac . (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gchdomtri | ⊢ ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → ( 𝐴 ≼ 𝐵 ∨ 𝐵 ≼ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdomdom | ⊢ ( 𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵 ) | |
| 2 | 1 | con3i | ⊢ ( ¬ 𝐴 ≼ 𝐵 → ¬ 𝐴 ≺ 𝐵 ) |
| 3 | reldom | ⊢ Rel ≼ | |
| 4 | 3 | brrelex1i | ⊢ ( 𝐵 ≼ 𝒫 𝐴 → 𝐵 ∈ V ) |
| 5 | 4 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → 𝐵 ∈ V ) |
| 6 | fidomtri2 | ⊢ ( ( 𝐵 ∈ V ∧ 𝐴 ∈ Fin ) → ( 𝐵 ≼ 𝐴 ↔ ¬ 𝐴 ≺ 𝐵 ) ) | |
| 7 | 5 6 | sylan | ⊢ ( ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ 𝐴 ∈ Fin ) → ( 𝐵 ≼ 𝐴 ↔ ¬ 𝐴 ≺ 𝐵 ) ) |
| 8 | 2 7 | imbitrrid | ⊢ ( ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ 𝐴 ∈ Fin ) → ( ¬ 𝐴 ≼ 𝐵 → 𝐵 ≼ 𝐴 ) ) |
| 9 | 8 | orrd | ⊢ ( ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ 𝐴 ∈ Fin ) → ( 𝐴 ≼ 𝐵 ∨ 𝐵 ≼ 𝐴 ) ) |
| 10 | simp1 | ⊢ ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → 𝐴 ∈ GCH ) | |
| 11 | 10 | adantr | ⊢ ( ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ ¬ 𝐴 ∈ Fin ) → 𝐴 ∈ GCH ) |
| 12 | simpr | ⊢ ( ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ ¬ 𝐴 ∈ Fin ) → ¬ 𝐴 ∈ Fin ) | |
| 13 | djudoml | ⊢ ( ( 𝐴 ∈ GCH ∧ 𝐵 ∈ V ) → 𝐴 ≼ ( 𝐴 ⊔ 𝐵 ) ) | |
| 14 | 10 5 13 | syl2anc | ⊢ ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → 𝐴 ≼ ( 𝐴 ⊔ 𝐵 ) ) |
| 15 | 14 | adantr | ⊢ ( ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ ¬ 𝐴 ∈ Fin ) → 𝐴 ≼ ( 𝐴 ⊔ 𝐵 ) ) |
| 16 | djulepw | ⊢ ( ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → ( 𝐴 ⊔ 𝐵 ) ≼ 𝒫 𝐴 ) | |
| 17 | 16 | 3adant1 | ⊢ ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → ( 𝐴 ⊔ 𝐵 ) ≼ 𝒫 𝐴 ) |
| 18 | 17 | adantr | ⊢ ( ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐴 ⊔ 𝐵 ) ≼ 𝒫 𝐴 ) |
| 19 | gchor | ⊢ ( ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝐴 ≼ ( 𝐴 ⊔ 𝐵 ) ∧ ( 𝐴 ⊔ 𝐵 ) ≼ 𝒫 𝐴 ) ) → ( 𝐴 ≈ ( 𝐴 ⊔ 𝐵 ) ∨ ( 𝐴 ⊔ 𝐵 ) ≈ 𝒫 𝐴 ) ) | |
| 20 | 11 12 15 18 19 | syl22anc | ⊢ ( ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐴 ≈ ( 𝐴 ⊔ 𝐵 ) ∨ ( 𝐴 ⊔ 𝐵 ) ≈ 𝒫 𝐴 ) ) |
| 21 | djudoml | ⊢ ( ( 𝐵 ∈ V ∧ 𝐴 ∈ GCH ) → 𝐵 ≼ ( 𝐵 ⊔ 𝐴 ) ) | |
| 22 | 5 10 21 | syl2anc | ⊢ ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → 𝐵 ≼ ( 𝐵 ⊔ 𝐴 ) ) |
| 23 | djucomen | ⊢ ( ( 𝐵 ∈ V ∧ 𝐴 ∈ GCH ) → ( 𝐵 ⊔ 𝐴 ) ≈ ( 𝐴 ⊔ 𝐵 ) ) | |
| 24 | 5 10 23 | syl2anc | ⊢ ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → ( 𝐵 ⊔ 𝐴 ) ≈ ( 𝐴 ⊔ 𝐵 ) ) |
| 25 | domentr | ⊢ ( ( 𝐵 ≼ ( 𝐵 ⊔ 𝐴 ) ∧ ( 𝐵 ⊔ 𝐴 ) ≈ ( 𝐴 ⊔ 𝐵 ) ) → 𝐵 ≼ ( 𝐴 ⊔ 𝐵 ) ) | |
| 26 | 22 24 25 | syl2anc | ⊢ ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → 𝐵 ≼ ( 𝐴 ⊔ 𝐵 ) ) |
| 27 | domen2 | ⊢ ( 𝐴 ≈ ( 𝐴 ⊔ 𝐵 ) → ( 𝐵 ≼ 𝐴 ↔ 𝐵 ≼ ( 𝐴 ⊔ 𝐵 ) ) ) | |
| 28 | 26 27 | syl5ibrcom | ⊢ ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → ( 𝐴 ≈ ( 𝐴 ⊔ 𝐵 ) → 𝐵 ≼ 𝐴 ) ) |
| 29 | 28 | imp | ⊢ ( ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ 𝐴 ≈ ( 𝐴 ⊔ 𝐵 ) ) → 𝐵 ≼ 𝐴 ) |
| 30 | 29 | olcd | ⊢ ( ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ 𝐴 ≈ ( 𝐴 ⊔ 𝐵 ) ) → ( 𝐴 ≼ 𝐵 ∨ 𝐵 ≼ 𝐴 ) ) |
| 31 | simpl1 | ⊢ ( ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ ( 𝐴 ⊔ 𝐵 ) ≈ 𝒫 𝐴 ) → 𝐴 ∈ GCH ) | |
| 32 | canth2g | ⊢ ( 𝐴 ∈ GCH → 𝐴 ≺ 𝒫 𝐴 ) | |
| 33 | sdomdom | ⊢ ( 𝐴 ≺ 𝒫 𝐴 → 𝐴 ≼ 𝒫 𝐴 ) | |
| 34 | 31 32 33 | 3syl | ⊢ ( ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ ( 𝐴 ⊔ 𝐵 ) ≈ 𝒫 𝐴 ) → 𝐴 ≼ 𝒫 𝐴 ) |
| 35 | simpl2 | ⊢ ( ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ ( 𝐴 ⊔ 𝐵 ) ≈ 𝒫 𝐴 ) → ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ) | |
| 36 | pwen | ⊢ ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 → 𝒫 ( 𝐴 ⊔ 𝐴 ) ≈ 𝒫 𝐴 ) | |
| 37 | 35 36 | syl | ⊢ ( ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ ( 𝐴 ⊔ 𝐵 ) ≈ 𝒫 𝐴 ) → 𝒫 ( 𝐴 ⊔ 𝐴 ) ≈ 𝒫 𝐴 ) |
| 38 | enen2 | ⊢ ( ( 𝐴 ⊔ 𝐵 ) ≈ 𝒫 𝐴 → ( 𝒫 ( 𝐴 ⊔ 𝐴 ) ≈ ( 𝐴 ⊔ 𝐵 ) ↔ 𝒫 ( 𝐴 ⊔ 𝐴 ) ≈ 𝒫 𝐴 ) ) | |
| 39 | 38 | adantl | ⊢ ( ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ ( 𝐴 ⊔ 𝐵 ) ≈ 𝒫 𝐴 ) → ( 𝒫 ( 𝐴 ⊔ 𝐴 ) ≈ ( 𝐴 ⊔ 𝐵 ) ↔ 𝒫 ( 𝐴 ⊔ 𝐴 ) ≈ 𝒫 𝐴 ) ) |
| 40 | 37 39 | mpbird | ⊢ ( ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ ( 𝐴 ⊔ 𝐵 ) ≈ 𝒫 𝐴 ) → 𝒫 ( 𝐴 ⊔ 𝐴 ) ≈ ( 𝐴 ⊔ 𝐵 ) ) |
| 41 | endom | ⊢ ( 𝒫 ( 𝐴 ⊔ 𝐴 ) ≈ ( 𝐴 ⊔ 𝐵 ) → 𝒫 ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 ⊔ 𝐵 ) ) | |
| 42 | pwdjudom | ⊢ ( 𝒫 ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 ⊔ 𝐵 ) → 𝒫 𝐴 ≼ 𝐵 ) | |
| 43 | 40 41 42 | 3syl | ⊢ ( ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ ( 𝐴 ⊔ 𝐵 ) ≈ 𝒫 𝐴 ) → 𝒫 𝐴 ≼ 𝐵 ) |
| 44 | domtr | ⊢ ( ( 𝐴 ≼ 𝒫 𝐴 ∧ 𝒫 𝐴 ≼ 𝐵 ) → 𝐴 ≼ 𝐵 ) | |
| 45 | 34 43 44 | syl2anc | ⊢ ( ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ ( 𝐴 ⊔ 𝐵 ) ≈ 𝒫 𝐴 ) → 𝐴 ≼ 𝐵 ) |
| 46 | 45 | orcd | ⊢ ( ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ ( 𝐴 ⊔ 𝐵 ) ≈ 𝒫 𝐴 ) → ( 𝐴 ≼ 𝐵 ∨ 𝐵 ≼ 𝐴 ) ) |
| 47 | 30 46 | jaodan | ⊢ ( ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ ( 𝐴 ≈ ( 𝐴 ⊔ 𝐵 ) ∨ ( 𝐴 ⊔ 𝐵 ) ≈ 𝒫 𝐴 ) ) → ( 𝐴 ≼ 𝐵 ∨ 𝐵 ≼ 𝐴 ) ) |
| 48 | 20 47 | syldan | ⊢ ( ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐴 ≼ 𝐵 ∨ 𝐵 ≼ 𝐴 ) ) |
| 49 | 9 48 | pm2.61dan | ⊢ ( ( 𝐴 ∈ GCH ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → ( 𝐴 ≼ 𝐵 ∨ 𝐵 ≼ 𝐴 ) ) |