This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If A is idempotent under cardinal sum and B is dominated by the power set of A , then so is the cardinal sum of A and B . (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | djulepw | ⊢ ( ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → ( 𝐴 ⊔ 𝐵 ) ≼ 𝒫 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djueq1 | ⊢ ( 𝐴 = ∅ → ( 𝐴 ⊔ 𝐵 ) = ( ∅ ⊔ 𝐵 ) ) | |
| 2 | 1 | breq1d | ⊢ ( 𝐴 = ∅ → ( ( 𝐴 ⊔ 𝐵 ) ≼ 𝒫 𝐴 ↔ ( ∅ ⊔ 𝐵 ) ≼ 𝒫 𝐴 ) ) |
| 3 | relen | ⊢ Rel ≈ | |
| 4 | 3 | brrelex2i | ⊢ ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 → 𝐴 ∈ V ) |
| 5 | 4 | adantr | ⊢ ( ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → 𝐴 ∈ V ) |
| 6 | canth2g | ⊢ ( 𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴 ) | |
| 7 | sdomdom | ⊢ ( 𝐴 ≺ 𝒫 𝐴 → 𝐴 ≼ 𝒫 𝐴 ) | |
| 8 | 5 6 7 | 3syl | ⊢ ( ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → 𝐴 ≼ 𝒫 𝐴 ) |
| 9 | simpr | ⊢ ( ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → 𝐵 ≼ 𝒫 𝐴 ) | |
| 10 | reldom | ⊢ Rel ≼ | |
| 11 | 10 | brrelex1i | ⊢ ( 𝐵 ≼ 𝒫 𝐴 → 𝐵 ∈ V ) |
| 12 | djudom1 | ⊢ ( ( 𝐴 ≼ 𝒫 𝐴 ∧ 𝐵 ∈ V ) → ( 𝐴 ⊔ 𝐵 ) ≼ ( 𝒫 𝐴 ⊔ 𝐵 ) ) | |
| 13 | 11 12 | sylan2 | ⊢ ( ( 𝐴 ≼ 𝒫 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → ( 𝐴 ⊔ 𝐵 ) ≼ ( 𝒫 𝐴 ⊔ 𝐵 ) ) |
| 14 | simpr | ⊢ ( ( 𝐴 ≼ 𝒫 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → 𝐵 ≼ 𝒫 𝐴 ) | |
| 15 | 10 | brrelex2i | ⊢ ( 𝐵 ≼ 𝒫 𝐴 → 𝒫 𝐴 ∈ V ) |
| 16 | djudom2 | ⊢ ( ( 𝐵 ≼ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V ) → ( 𝒫 𝐴 ⊔ 𝐵 ) ≼ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ) | |
| 17 | 14 15 16 | syl2anc2 | ⊢ ( ( 𝐴 ≼ 𝒫 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → ( 𝒫 𝐴 ⊔ 𝐵 ) ≼ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ) |
| 18 | domtr | ⊢ ( ( ( 𝐴 ⊔ 𝐵 ) ≼ ( 𝒫 𝐴 ⊔ 𝐵 ) ∧ ( 𝒫 𝐴 ⊔ 𝐵 ) ≼ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ) → ( 𝐴 ⊔ 𝐵 ) ≼ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ) | |
| 19 | 13 17 18 | syl2anc | ⊢ ( ( 𝐴 ≼ 𝒫 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → ( 𝐴 ⊔ 𝐵 ) ≼ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ) |
| 20 | 8 9 19 | syl2anc | ⊢ ( ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → ( 𝐴 ⊔ 𝐵 ) ≼ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ) |
| 21 | pwdju1 | ⊢ ( 𝐴 ∈ V → ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ≈ 𝒫 ( 𝐴 ⊔ 1o ) ) | |
| 22 | 5 21 | syl | ⊢ ( ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ≈ 𝒫 ( 𝐴 ⊔ 1o ) ) |
| 23 | domentr | ⊢ ( ( ( 𝐴 ⊔ 𝐵 ) ≼ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ∧ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ≈ 𝒫 ( 𝐴 ⊔ 1o ) ) → ( 𝐴 ⊔ 𝐵 ) ≼ 𝒫 ( 𝐴 ⊔ 1o ) ) | |
| 24 | 20 22 23 | syl2anc | ⊢ ( ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → ( 𝐴 ⊔ 𝐵 ) ≼ 𝒫 ( 𝐴 ⊔ 1o ) ) |
| 25 | 24 | adantr | ⊢ ( ( ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ 𝐴 ≠ ∅ ) → ( 𝐴 ⊔ 𝐵 ) ≼ 𝒫 ( 𝐴 ⊔ 1o ) ) |
| 26 | 0sdomg | ⊢ ( 𝐴 ∈ V → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) ) | |
| 27 | 5 26 | syl | ⊢ ( ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
| 28 | 27 | biimpar | ⊢ ( ( ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ 𝐴 ≠ ∅ ) → ∅ ≺ 𝐴 ) |
| 29 | 0sdom1dom | ⊢ ( ∅ ≺ 𝐴 ↔ 1o ≼ 𝐴 ) | |
| 30 | 28 29 | sylib | ⊢ ( ( ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ 𝐴 ≠ ∅ ) → 1o ≼ 𝐴 ) |
| 31 | 5 | adantr | ⊢ ( ( ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ 𝐴 ≠ ∅ ) → 𝐴 ∈ V ) |
| 32 | djudom2 | ⊢ ( ( 1o ≼ 𝐴 ∧ 𝐴 ∈ V ) → ( 𝐴 ⊔ 1o ) ≼ ( 𝐴 ⊔ 𝐴 ) ) | |
| 33 | 30 31 32 | syl2anc | ⊢ ( ( ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ 𝐴 ≠ ∅ ) → ( 𝐴 ⊔ 1o ) ≼ ( 𝐴 ⊔ 𝐴 ) ) |
| 34 | simpll | ⊢ ( ( ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ 𝐴 ≠ ∅ ) → ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ) | |
| 35 | domentr | ⊢ ( ( ( 𝐴 ⊔ 1o ) ≼ ( 𝐴 ⊔ 𝐴 ) ∧ ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ) → ( 𝐴 ⊔ 1o ) ≼ 𝐴 ) | |
| 36 | 33 34 35 | syl2anc | ⊢ ( ( ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ 𝐴 ≠ ∅ ) → ( 𝐴 ⊔ 1o ) ≼ 𝐴 ) |
| 37 | pwdom | ⊢ ( ( 𝐴 ⊔ 1o ) ≼ 𝐴 → 𝒫 ( 𝐴 ⊔ 1o ) ≼ 𝒫 𝐴 ) | |
| 38 | 36 37 | syl | ⊢ ( ( ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ 𝐴 ≠ ∅ ) → 𝒫 ( 𝐴 ⊔ 1o ) ≼ 𝒫 𝐴 ) |
| 39 | domtr | ⊢ ( ( ( 𝐴 ⊔ 𝐵 ) ≼ 𝒫 ( 𝐴 ⊔ 1o ) ∧ 𝒫 ( 𝐴 ⊔ 1o ) ≼ 𝒫 𝐴 ) → ( 𝐴 ⊔ 𝐵 ) ≼ 𝒫 𝐴 ) | |
| 40 | 25 38 39 | syl2anc | ⊢ ( ( ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) ∧ 𝐴 ≠ ∅ ) → ( 𝐴 ⊔ 𝐵 ) ≼ 𝒫 𝐴 ) |
| 41 | 0ex | ⊢ ∅ ∈ V | |
| 42 | 11 | adantl | ⊢ ( ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → 𝐵 ∈ V ) |
| 43 | djucomen | ⊢ ( ( ∅ ∈ V ∧ 𝐵 ∈ V ) → ( ∅ ⊔ 𝐵 ) ≈ ( 𝐵 ⊔ ∅ ) ) | |
| 44 | 41 42 43 | sylancr | ⊢ ( ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → ( ∅ ⊔ 𝐵 ) ≈ ( 𝐵 ⊔ ∅ ) ) |
| 45 | dju0en | ⊢ ( 𝐵 ∈ V → ( 𝐵 ⊔ ∅ ) ≈ 𝐵 ) | |
| 46 | domen1 | ⊢ ( ( 𝐵 ⊔ ∅ ) ≈ 𝐵 → ( ( 𝐵 ⊔ ∅ ) ≼ 𝒫 𝐴 ↔ 𝐵 ≼ 𝒫 𝐴 ) ) | |
| 47 | 42 45 46 | 3syl | ⊢ ( ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → ( ( 𝐵 ⊔ ∅ ) ≼ 𝒫 𝐴 ↔ 𝐵 ≼ 𝒫 𝐴 ) ) |
| 48 | 9 47 | mpbird | ⊢ ( ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → ( 𝐵 ⊔ ∅ ) ≼ 𝒫 𝐴 ) |
| 49 | endomtr | ⊢ ( ( ( ∅ ⊔ 𝐵 ) ≈ ( 𝐵 ⊔ ∅ ) ∧ ( 𝐵 ⊔ ∅ ) ≼ 𝒫 𝐴 ) → ( ∅ ⊔ 𝐵 ) ≼ 𝒫 𝐴 ) | |
| 50 | 44 48 49 | syl2anc | ⊢ ( ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → ( ∅ ⊔ 𝐵 ) ≼ 𝒫 𝐴 ) |
| 51 | 2 40 50 | pm2.61ne | ⊢ ( ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴 ) → ( 𝐴 ⊔ 𝐵 ) ≼ 𝒫 𝐴 ) |