This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Under certain conditions, a GCH-set can demonstrate trichotomy of dominance. Lemma for gchac . (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gchdomtri | |- ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) -> ( A ~<_ B \/ B ~<_ A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdomdom | |- ( A ~< B -> A ~<_ B ) |
|
| 2 | 1 | con3i | |- ( -. A ~<_ B -> -. A ~< B ) |
| 3 | reldom | |- Rel ~<_ |
|
| 4 | 3 | brrelex1i | |- ( B ~<_ ~P A -> B e. _V ) |
| 5 | 4 | 3ad2ant3 | |- ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) -> B e. _V ) |
| 6 | fidomtri2 | |- ( ( B e. _V /\ A e. Fin ) -> ( B ~<_ A <-> -. A ~< B ) ) |
|
| 7 | 5 6 | sylan | |- ( ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ A e. Fin ) -> ( B ~<_ A <-> -. A ~< B ) ) |
| 8 | 2 7 | imbitrrid | |- ( ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ A e. Fin ) -> ( -. A ~<_ B -> B ~<_ A ) ) |
| 9 | 8 | orrd | |- ( ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ A e. Fin ) -> ( A ~<_ B \/ B ~<_ A ) ) |
| 10 | simp1 | |- ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) -> A e. GCH ) |
|
| 11 | 10 | adantr | |- ( ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ -. A e. Fin ) -> A e. GCH ) |
| 12 | simpr | |- ( ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ -. A e. Fin ) -> -. A e. Fin ) |
|
| 13 | djudoml | |- ( ( A e. GCH /\ B e. _V ) -> A ~<_ ( A |_| B ) ) |
|
| 14 | 10 5 13 | syl2anc | |- ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) -> A ~<_ ( A |_| B ) ) |
| 15 | 14 | adantr | |- ( ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ -. A e. Fin ) -> A ~<_ ( A |_| B ) ) |
| 16 | djulepw | |- ( ( ( A |_| A ) ~~ A /\ B ~<_ ~P A ) -> ( A |_| B ) ~<_ ~P A ) |
|
| 17 | 16 | 3adant1 | |- ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) -> ( A |_| B ) ~<_ ~P A ) |
| 18 | 17 | adantr | |- ( ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ -. A e. Fin ) -> ( A |_| B ) ~<_ ~P A ) |
| 19 | gchor | |- ( ( ( A e. GCH /\ -. A e. Fin ) /\ ( A ~<_ ( A |_| B ) /\ ( A |_| B ) ~<_ ~P A ) ) -> ( A ~~ ( A |_| B ) \/ ( A |_| B ) ~~ ~P A ) ) |
|
| 20 | 11 12 15 18 19 | syl22anc | |- ( ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ -. A e. Fin ) -> ( A ~~ ( A |_| B ) \/ ( A |_| B ) ~~ ~P A ) ) |
| 21 | djudoml | |- ( ( B e. _V /\ A e. GCH ) -> B ~<_ ( B |_| A ) ) |
|
| 22 | 5 10 21 | syl2anc | |- ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) -> B ~<_ ( B |_| A ) ) |
| 23 | djucomen | |- ( ( B e. _V /\ A e. GCH ) -> ( B |_| A ) ~~ ( A |_| B ) ) |
|
| 24 | 5 10 23 | syl2anc | |- ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) -> ( B |_| A ) ~~ ( A |_| B ) ) |
| 25 | domentr | |- ( ( B ~<_ ( B |_| A ) /\ ( B |_| A ) ~~ ( A |_| B ) ) -> B ~<_ ( A |_| B ) ) |
|
| 26 | 22 24 25 | syl2anc | |- ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) -> B ~<_ ( A |_| B ) ) |
| 27 | domen2 | |- ( A ~~ ( A |_| B ) -> ( B ~<_ A <-> B ~<_ ( A |_| B ) ) ) |
|
| 28 | 26 27 | syl5ibrcom | |- ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) -> ( A ~~ ( A |_| B ) -> B ~<_ A ) ) |
| 29 | 28 | imp | |- ( ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ A ~~ ( A |_| B ) ) -> B ~<_ A ) |
| 30 | 29 | olcd | |- ( ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ A ~~ ( A |_| B ) ) -> ( A ~<_ B \/ B ~<_ A ) ) |
| 31 | simpl1 | |- ( ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ ( A |_| B ) ~~ ~P A ) -> A e. GCH ) |
|
| 32 | canth2g | |- ( A e. GCH -> A ~< ~P A ) |
|
| 33 | sdomdom | |- ( A ~< ~P A -> A ~<_ ~P A ) |
|
| 34 | 31 32 33 | 3syl | |- ( ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ ( A |_| B ) ~~ ~P A ) -> A ~<_ ~P A ) |
| 35 | simpl2 | |- ( ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ ( A |_| B ) ~~ ~P A ) -> ( A |_| A ) ~~ A ) |
|
| 36 | pwen | |- ( ( A |_| A ) ~~ A -> ~P ( A |_| A ) ~~ ~P A ) |
|
| 37 | 35 36 | syl | |- ( ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ ( A |_| B ) ~~ ~P A ) -> ~P ( A |_| A ) ~~ ~P A ) |
| 38 | enen2 | |- ( ( A |_| B ) ~~ ~P A -> ( ~P ( A |_| A ) ~~ ( A |_| B ) <-> ~P ( A |_| A ) ~~ ~P A ) ) |
|
| 39 | 38 | adantl | |- ( ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ ( A |_| B ) ~~ ~P A ) -> ( ~P ( A |_| A ) ~~ ( A |_| B ) <-> ~P ( A |_| A ) ~~ ~P A ) ) |
| 40 | 37 39 | mpbird | |- ( ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ ( A |_| B ) ~~ ~P A ) -> ~P ( A |_| A ) ~~ ( A |_| B ) ) |
| 41 | endom | |- ( ~P ( A |_| A ) ~~ ( A |_| B ) -> ~P ( A |_| A ) ~<_ ( A |_| B ) ) |
|
| 42 | pwdjudom | |- ( ~P ( A |_| A ) ~<_ ( A |_| B ) -> ~P A ~<_ B ) |
|
| 43 | 40 41 42 | 3syl | |- ( ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ ( A |_| B ) ~~ ~P A ) -> ~P A ~<_ B ) |
| 44 | domtr | |- ( ( A ~<_ ~P A /\ ~P A ~<_ B ) -> A ~<_ B ) |
|
| 45 | 34 43 44 | syl2anc | |- ( ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ ( A |_| B ) ~~ ~P A ) -> A ~<_ B ) |
| 46 | 45 | orcd | |- ( ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ ( A |_| B ) ~~ ~P A ) -> ( A ~<_ B \/ B ~<_ A ) ) |
| 47 | 30 46 | jaodan | |- ( ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ ( A ~~ ( A |_| B ) \/ ( A |_| B ) ~~ ~P A ) ) -> ( A ~<_ B \/ B ~<_ A ) ) |
| 48 | 20 47 | syldan | |- ( ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ -. A e. Fin ) -> ( A ~<_ B \/ B ~<_ A ) ) |
| 49 | 9 48 | pm2.61dan | |- ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) -> ( A ~<_ B \/ B ~<_ A ) ) |