This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The powerset of a Dedekind-infinite set does not inject into its cardinal sum with itself. (Contributed by Mario Carneiro, 31-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pwdjundom | ⊢ ( ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ ( 𝐴 ⊔ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwxpndom2 | ⊢ ( ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ) | |
| 2 | df1o2 | ⊢ 1o = { ∅ } | |
| 3 | 2 | xpeq1i | ⊢ ( 1o × 𝐴 ) = ( { ∅ } × 𝐴 ) |
| 4 | 0ex | ⊢ ∅ ∈ V | |
| 5 | reldom | ⊢ Rel ≼ | |
| 6 | 5 | brrelex2i | ⊢ ( ω ≼ 𝐴 → 𝐴 ∈ V ) |
| 7 | xpsnen2g | ⊢ ( ( ∅ ∈ V ∧ 𝐴 ∈ V ) → ( { ∅ } × 𝐴 ) ≈ 𝐴 ) | |
| 8 | 4 6 7 | sylancr | ⊢ ( ω ≼ 𝐴 → ( { ∅ } × 𝐴 ) ≈ 𝐴 ) |
| 9 | 3 8 | eqbrtrid | ⊢ ( ω ≼ 𝐴 → ( 1o × 𝐴 ) ≈ 𝐴 ) |
| 10 | 9 | ensymd | ⊢ ( ω ≼ 𝐴 → 𝐴 ≈ ( 1o × 𝐴 ) ) |
| 11 | omex | ⊢ ω ∈ V | |
| 12 | ordom | ⊢ Ord ω | |
| 13 | 1onn | ⊢ 1o ∈ ω | |
| 14 | ordelss | ⊢ ( ( Ord ω ∧ 1o ∈ ω ) → 1o ⊆ ω ) | |
| 15 | 12 13 14 | mp2an | ⊢ 1o ⊆ ω |
| 16 | ssdomg | ⊢ ( ω ∈ V → ( 1o ⊆ ω → 1o ≼ ω ) ) | |
| 17 | 11 15 16 | mp2 | ⊢ 1o ≼ ω |
| 18 | domtr | ⊢ ( ( 1o ≼ ω ∧ ω ≼ 𝐴 ) → 1o ≼ 𝐴 ) | |
| 19 | 17 18 | mpan | ⊢ ( ω ≼ 𝐴 → 1o ≼ 𝐴 ) |
| 20 | xpdom1g | ⊢ ( ( 𝐴 ∈ V ∧ 1o ≼ 𝐴 ) → ( 1o × 𝐴 ) ≼ ( 𝐴 × 𝐴 ) ) | |
| 21 | 6 19 20 | syl2anc | ⊢ ( ω ≼ 𝐴 → ( 1o × 𝐴 ) ≼ ( 𝐴 × 𝐴 ) ) |
| 22 | endomtr | ⊢ ( ( 𝐴 ≈ ( 1o × 𝐴 ) ∧ ( 1o × 𝐴 ) ≼ ( 𝐴 × 𝐴 ) ) → 𝐴 ≼ ( 𝐴 × 𝐴 ) ) | |
| 23 | 10 21 22 | syl2anc | ⊢ ( ω ≼ 𝐴 → 𝐴 ≼ ( 𝐴 × 𝐴 ) ) |
| 24 | djudom2 | ⊢ ( ( 𝐴 ≼ ( 𝐴 × 𝐴 ) ∧ 𝐴 ∈ V ) → ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ) | |
| 25 | 23 6 24 | syl2anc | ⊢ ( ω ≼ 𝐴 → ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ) |
| 26 | domtr | ⊢ ( ( 𝒫 𝐴 ≼ ( 𝐴 ⊔ 𝐴 ) ∧ ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ) → 𝒫 𝐴 ≼ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ) | |
| 27 | 26 | expcom | ⊢ ( ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) → ( 𝒫 𝐴 ≼ ( 𝐴 ⊔ 𝐴 ) → 𝒫 𝐴 ≼ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ) ) |
| 28 | 25 27 | syl | ⊢ ( ω ≼ 𝐴 → ( 𝒫 𝐴 ≼ ( 𝐴 ⊔ 𝐴 ) → 𝒫 𝐴 ≼ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ) ) |
| 29 | 1 28 | mtod | ⊢ ( ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ ( 𝐴 ⊔ 𝐴 ) ) |