This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a continuous function has zero derivative at all points on the interior of a closed interval, then it must be a constant function. (Contributed by Mario Carneiro, 2-Sep-2014) (Proof shortened by Mario Carneiro, 3-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dveq0.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| dveq0.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| dveq0.c | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) | ||
| dveq0.d | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) = ( ( 𝐴 (,) 𝐵 ) × { 0 } ) ) | ||
| Assertion | dveq0 | ⊢ ( 𝜑 → 𝐹 = ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dveq0.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | dveq0.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | dveq0.c | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) | |
| 4 | dveq0.d | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) = ( ( 𝐴 (,) 𝐵 ) × { 0 } ) ) | |
| 5 | cncff | ⊢ ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) | |
| 6 | 3 5 | syl | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
| 7 | 6 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn ( 𝐴 [,] 𝐵 ) ) |
| 8 | fvex | ⊢ ( 𝐹 ‘ 𝐴 ) ∈ V | |
| 9 | fnconstg | ⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ V → ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) Fn ( 𝐴 [,] 𝐵 ) ) | |
| 10 | 8 9 | mp1i | ⊢ ( 𝜑 → ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) Fn ( 𝐴 [,] 𝐵 ) ) |
| 11 | 8 | fvconst2 | ⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 12 | 11 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 13 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
| 14 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ∈ ℝ ) |
| 15 | 14 | rexrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ∈ ℝ* ) |
| 16 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐵 ∈ ℝ ) |
| 17 | 16 | rexrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐵 ∈ ℝ* ) |
| 18 | elicc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) | |
| 19 | 1 2 18 | syl2anc | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
| 20 | 19 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) |
| 21 | 20 | simp1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ℝ ) |
| 22 | 20 | simp2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ≤ 𝑥 ) |
| 23 | 20 | simp3d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ≤ 𝐵 ) |
| 24 | 14 21 16 22 23 | letrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ≤ 𝐵 ) |
| 25 | lbicc2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 26 | 15 17 24 25 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 27 | 13 26 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝐴 ) ∈ ℂ ) |
| 28 | 6 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 29 | 27 28 | subcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝑥 ) ) ∈ ℂ ) |
| 30 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 31 | 26 30 | jca | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ) |
| 32 | 4 | dmeqd | ⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = dom ( ( 𝐴 (,) 𝐵 ) × { 0 } ) ) |
| 33 | c0ex | ⊢ 0 ∈ V | |
| 34 | 33 | snnz | ⊢ { 0 } ≠ ∅ |
| 35 | dmxp | ⊢ ( { 0 } ≠ ∅ → dom ( ( 𝐴 (,) 𝐵 ) × { 0 } ) = ( 𝐴 (,) 𝐵 ) ) | |
| 36 | 34 35 | ax-mp | ⊢ dom ( ( 𝐴 (,) 𝐵 ) × { 0 } ) = ( 𝐴 (,) 𝐵 ) |
| 37 | 32 36 | eqtrdi | ⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) |
| 38 | 0red | ⊢ ( 𝜑 → 0 ∈ ℝ ) | |
| 39 | 4 | fveq1d | ⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ‘ 𝑦 ) = ( ( ( 𝐴 (,) 𝐵 ) × { 0 } ) ‘ 𝑦 ) ) |
| 40 | 33 | fvconst2 | ⊢ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) → ( ( ( 𝐴 (,) 𝐵 ) × { 0 } ) ‘ 𝑦 ) = 0 ) |
| 41 | 39 40 | sylan9eq | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑦 ) = 0 ) |
| 42 | 41 | abs00bd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) = 0 ) |
| 43 | 0le0 | ⊢ 0 ≤ 0 | |
| 44 | 42 43 | eqbrtrdi | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ≤ 0 ) |
| 45 | 1 2 3 37 38 44 | dvlip | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 0 · ( abs ‘ ( 𝐴 − 𝑥 ) ) ) ) |
| 46 | 31 45 | syldan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 0 · ( abs ‘ ( 𝐴 − 𝑥 ) ) ) ) |
| 47 | 14 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ∈ ℂ ) |
| 48 | 21 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ℂ ) |
| 49 | 47 48 | subcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 − 𝑥 ) ∈ ℂ ) |
| 50 | 49 | abscld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( abs ‘ ( 𝐴 − 𝑥 ) ) ∈ ℝ ) |
| 51 | 50 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( abs ‘ ( 𝐴 − 𝑥 ) ) ∈ ℂ ) |
| 52 | 51 | mul02d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 0 · ( abs ‘ ( 𝐴 − 𝑥 ) ) ) = 0 ) |
| 53 | 46 52 | breqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ 0 ) |
| 54 | 29 | absge0d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 0 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 55 | 29 | abscld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 56 | 0re | ⊢ 0 ∈ ℝ | |
| 57 | letri3 | ⊢ ( ( ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝑥 ) ) ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝑥 ) ) ) = 0 ↔ ( ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ 0 ∧ 0 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝑥 ) ) ) ) ) ) | |
| 58 | 55 56 57 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝑥 ) ) ) = 0 ↔ ( ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ 0 ∧ 0 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝑥 ) ) ) ) ) ) |
| 59 | 53 54 58 | mpbir2and | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝑥 ) ) ) = 0 ) |
| 60 | 29 59 | abs00d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝑥 ) ) = 0 ) |
| 61 | 27 28 60 | subeq0d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 62 | 12 61 | eqtr2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) = ( ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) ‘ 𝑥 ) ) |
| 63 | 7 10 62 | eqfnfvd | ⊢ ( 𝜑 → 𝐹 = ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) ) |