This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ftc2ditg . (Contributed by Mario Carneiro, 3-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ftc2ditg.x | ⊢ ( 𝜑 → 𝑋 ∈ ℝ ) | |
| ftc2ditg.y | ⊢ ( 𝜑 → 𝑌 ∈ ℝ ) | ||
| ftc2ditg.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝑋 [,] 𝑌 ) ) | ||
| ftc2ditg.b | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝑋 [,] 𝑌 ) ) | ||
| ftc2ditg.c | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) | ||
| ftc2ditg.i | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) ∈ 𝐿1 ) | ||
| ftc2ditg.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) ) | ||
| Assertion | ftc2ditglem | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ⨜ [ 𝐴 → 𝐵 ] ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 = ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ftc2ditg.x | ⊢ ( 𝜑 → 𝑋 ∈ ℝ ) | |
| 2 | ftc2ditg.y | ⊢ ( 𝜑 → 𝑌 ∈ ℝ ) | |
| 3 | ftc2ditg.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝑋 [,] 𝑌 ) ) | |
| 4 | ftc2ditg.b | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝑋 [,] 𝑌 ) ) | |
| 5 | ftc2ditg.c | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) | |
| 6 | ftc2ditg.i | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) ∈ 𝐿1 ) | |
| 7 | ftc2ditg.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) ) | |
| 8 | simpr | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ≤ 𝐵 ) | |
| 9 | 8 | ditgpos | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ⨜ [ 𝐴 → 𝐵 ] ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 = ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 ) |
| 10 | iccssre | ⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( 𝑋 [,] 𝑌 ) ⊆ ℝ ) | |
| 11 | 1 2 10 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 [,] 𝑌 ) ⊆ ℝ ) |
| 12 | 11 3 | sseldd | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 13 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ℝ ) |
| 14 | 11 4 | sseldd | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 15 | 14 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ℝ ) |
| 16 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 17 | 16 | a1i | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ℝ ⊆ ℂ ) |
| 18 | cncff | ⊢ ( 𝐹 ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) → 𝐹 : ( 𝑋 [,] 𝑌 ) ⟶ ℂ ) | |
| 19 | 7 18 | syl | ⊢ ( 𝜑 → 𝐹 : ( 𝑋 [,] 𝑌 ) ⟶ ℂ ) |
| 20 | 19 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → 𝐹 : ( 𝑋 [,] 𝑌 ) ⟶ ℂ ) |
| 21 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( 𝑋 [,] 𝑌 ) ⊆ ℝ ) |
| 22 | iccssre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) | |
| 23 | 12 14 22 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 24 | 23 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 25 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 26 | tgioo4 | ⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) | |
| 27 | 25 26 | dvres | ⊢ ( ( ( ℝ ⊆ ℂ ∧ 𝐹 : ( 𝑋 [,] 𝑌 ) ⟶ ℂ ) ∧ ( ( 𝑋 [,] 𝑌 ) ⊆ ℝ ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) ) → ( ℝ D ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 28 | 17 20 21 24 27 | syl22anc | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( ℝ D ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 29 | iccntr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) | |
| 30 | 12 14 29 | syl2anc | ⊢ ( 𝜑 → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) |
| 31 | 30 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) |
| 32 | 31 | reseq2d | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( 𝐴 (,) 𝐵 ) ) ) |
| 33 | 28 32 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( ℝ D ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( 𝐴 (,) 𝐵 ) ) ) |
| 34 | 1 | rexrd | ⊢ ( 𝜑 → 𝑋 ∈ ℝ* ) |
| 35 | elicc2 | ⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( 𝐴 ∈ ( 𝑋 [,] 𝑌 ) ↔ ( 𝐴 ∈ ℝ ∧ 𝑋 ≤ 𝐴 ∧ 𝐴 ≤ 𝑌 ) ) ) | |
| 36 | 1 2 35 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 ∈ ( 𝑋 [,] 𝑌 ) ↔ ( 𝐴 ∈ ℝ ∧ 𝑋 ≤ 𝐴 ∧ 𝐴 ≤ 𝑌 ) ) ) |
| 37 | 3 36 | mpbid | ⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 𝑋 ≤ 𝐴 ∧ 𝐴 ≤ 𝑌 ) ) |
| 38 | 37 | simp2d | ⊢ ( 𝜑 → 𝑋 ≤ 𝐴 ) |
| 39 | iooss1 | ⊢ ( ( 𝑋 ∈ ℝ* ∧ 𝑋 ≤ 𝐴 ) → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝑋 (,) 𝐵 ) ) | |
| 40 | 34 38 39 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝑋 (,) 𝐵 ) ) |
| 41 | 2 | rexrd | ⊢ ( 𝜑 → 𝑌 ∈ ℝ* ) |
| 42 | elicc2 | ⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( 𝐵 ∈ ( 𝑋 [,] 𝑌 ) ↔ ( 𝐵 ∈ ℝ ∧ 𝑋 ≤ 𝐵 ∧ 𝐵 ≤ 𝑌 ) ) ) | |
| 43 | 1 2 42 | syl2anc | ⊢ ( 𝜑 → ( 𝐵 ∈ ( 𝑋 [,] 𝑌 ) ↔ ( 𝐵 ∈ ℝ ∧ 𝑋 ≤ 𝐵 ∧ 𝐵 ≤ 𝑌 ) ) ) |
| 44 | 4 43 | mpbid | ⊢ ( 𝜑 → ( 𝐵 ∈ ℝ ∧ 𝑋 ≤ 𝐵 ∧ 𝐵 ≤ 𝑌 ) ) |
| 45 | 44 | simp3d | ⊢ ( 𝜑 → 𝐵 ≤ 𝑌 ) |
| 46 | iooss2 | ⊢ ( ( 𝑌 ∈ ℝ* ∧ 𝐵 ≤ 𝑌 ) → ( 𝑋 (,) 𝐵 ) ⊆ ( 𝑋 (,) 𝑌 ) ) | |
| 47 | 41 45 46 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 (,) 𝐵 ) ⊆ ( 𝑋 (,) 𝑌 ) ) |
| 48 | 40 47 | sstrd | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝑋 (,) 𝑌 ) ) |
| 49 | 48 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝑋 (,) 𝑌 ) ) |
| 50 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( ℝ D 𝐹 ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) |
| 51 | rescncf | ⊢ ( ( 𝐴 (,) 𝐵 ) ⊆ ( 𝑋 (,) 𝑌 ) → ( ( ℝ D 𝐹 ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) → ( ( ℝ D 𝐹 ) ↾ ( 𝐴 (,) 𝐵 ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) ) | |
| 52 | 49 50 51 | sylc | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( ( ℝ D 𝐹 ) ↾ ( 𝐴 (,) 𝐵 ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
| 53 | 33 52 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( ℝ D ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
| 54 | cncff | ⊢ ( ( ℝ D 𝐹 ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) → ( ℝ D 𝐹 ) : ( 𝑋 (,) 𝑌 ) ⟶ ℂ ) | |
| 55 | 5 54 | syl | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) : ( 𝑋 (,) 𝑌 ) ⟶ ℂ ) |
| 56 | 55 | feqmptd | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) = ( 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ) |
| 57 | 56 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( ℝ D 𝐹 ) = ( 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ) |
| 58 | 57 | reseq1d | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( ( ℝ D 𝐹 ) ↾ ( 𝐴 (,) 𝐵 ) ) = ( ( 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ↾ ( 𝐴 (,) 𝐵 ) ) ) |
| 59 | 49 | resmptd | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ↾ ( 𝐴 (,) 𝐵 ) ) = ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ) |
| 60 | 58 59 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( ( ℝ D 𝐹 ) ↾ ( 𝐴 (,) 𝐵 ) ) = ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ) |
| 61 | 33 60 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( ℝ D ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ) = ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ) |
| 62 | ioombl | ⊢ ( 𝐴 (,) 𝐵 ) ∈ dom vol | |
| 63 | 62 | a1i | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 (,) 𝐵 ) ∈ dom vol ) |
| 64 | fvexd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ∈ V ) | |
| 65 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( ℝ D 𝐹 ) ∈ 𝐿1 ) |
| 66 | 57 65 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ∈ 𝐿1 ) |
| 67 | 49 63 64 66 | iblss | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ∈ 𝐿1 ) |
| 68 | 61 67 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( ℝ D ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ) ∈ 𝐿1 ) |
| 69 | iccss2 | ⊢ ( ( 𝐴 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝐵 ∈ ( 𝑋 [,] 𝑌 ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ( 𝑋 [,] 𝑌 ) ) | |
| 70 | 3 4 69 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ( 𝑋 [,] 𝑌 ) ) |
| 71 | rescncf | ⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ ( 𝑋 [,] 𝑌 ) → ( 𝐹 ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ) | |
| 72 | 70 7 71 | sylc | ⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 73 | 72 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 74 | 13 15 8 53 68 73 | ftc2 | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ) ‘ 𝑡 ) d 𝑡 = ( ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) − ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) ) ) |
| 75 | 33 | fveq1d | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( ( ℝ D ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ) ‘ 𝑡 ) = ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑡 ) ) |
| 76 | fvres | ⊢ ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) → ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑡 ) = ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) | |
| 77 | 75 76 | sylan9eq | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ) ‘ 𝑡 ) = ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) |
| 78 | 77 | itgeq2dv | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ) ‘ 𝑡 ) d 𝑡 = ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 ) |
| 79 | 13 | rexrd | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ℝ* ) |
| 80 | 15 | rexrd | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ℝ* ) |
| 81 | ubicc2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 82 | lbicc2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 83 | fvres | ⊢ ( 𝐵 ∈ ( 𝐴 [,] 𝐵 ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) = ( 𝐹 ‘ 𝐵 ) ) | |
| 84 | fvres | ⊢ ( 𝐴 ∈ ( 𝐴 [,] 𝐵 ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) | |
| 85 | 83 84 | oveqan12d | ⊢ ( ( 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) − ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) ) = ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ) |
| 86 | 81 82 85 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) − ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) ) = ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ) |
| 87 | 79 80 8 86 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) − ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) ) = ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ) |
| 88 | 74 78 87 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 = ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ) |
| 89 | 9 88 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ⨜ [ 𝐴 → 𝐵 ] ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 = ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ) |