This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The integral of anything on the empty set is zero. (Contributed by Mario Carneiro, 13-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itg0 | ⊢ ∫ ∅ 𝐴 d 𝑥 = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( ℜ ‘ ( 𝐴 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 𝐴 / ( i ↑ 𝑘 ) ) ) | |
| 2 | 1 | dfitg | ⊢ ∫ ∅ 𝐴 d 𝑥 = Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ ∅ ∧ 0 ≤ ( ℜ ‘ ( 𝐴 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐴 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) |
| 3 | ifan | ⊢ if ( ( 𝑥 ∈ ∅ ∧ 0 ≤ ( ℜ ‘ ( 𝐴 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐴 / ( i ↑ 𝑘 ) ) ) , 0 ) = if ( 𝑥 ∈ ∅ , if ( 0 ≤ ( ℜ ‘ ( 𝐴 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐴 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) | |
| 4 | noel | ⊢ ¬ 𝑥 ∈ ∅ | |
| 5 | 4 | iffalsei | ⊢ if ( 𝑥 ∈ ∅ , if ( 0 ≤ ( ℜ ‘ ( 𝐴 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐴 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) = 0 |
| 6 | 3 5 | eqtri | ⊢ if ( ( 𝑥 ∈ ∅ ∧ 0 ≤ ( ℜ ‘ ( 𝐴 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐴 / ( i ↑ 𝑘 ) ) ) , 0 ) = 0 |
| 7 | 6 | mpteq2i | ⊢ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ ∅ ∧ 0 ≤ ( ℜ ‘ ( 𝐴 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐴 / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ 0 ) |
| 8 | fconstmpt | ⊢ ( ℝ × { 0 } ) = ( 𝑥 ∈ ℝ ↦ 0 ) | |
| 9 | 7 8 | eqtr4i | ⊢ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ ∅ ∧ 0 ≤ ( ℜ ‘ ( 𝐴 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐴 / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( ℝ × { 0 } ) |
| 10 | 9 | fveq2i | ⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ ∅ ∧ 0 ≤ ( ℜ ‘ ( 𝐴 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐴 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) = ( ∫2 ‘ ( ℝ × { 0 } ) ) |
| 11 | itg20 | ⊢ ( ∫2 ‘ ( ℝ × { 0 } ) ) = 0 | |
| 12 | 10 11 | eqtri | ⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ ∅ ∧ 0 ≤ ( ℜ ‘ ( 𝐴 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐴 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) = 0 |
| 13 | 12 | oveq2i | ⊢ ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ ∅ ∧ 0 ≤ ( ℜ ‘ ( 𝐴 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐴 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) = ( ( i ↑ 𝑘 ) · 0 ) |
| 14 | ax-icn | ⊢ i ∈ ℂ | |
| 15 | elfznn0 | ⊢ ( 𝑘 ∈ ( 0 ... 3 ) → 𝑘 ∈ ℕ0 ) | |
| 16 | expcl | ⊢ ( ( i ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( i ↑ 𝑘 ) ∈ ℂ ) | |
| 17 | 14 15 16 | sylancr | ⊢ ( 𝑘 ∈ ( 0 ... 3 ) → ( i ↑ 𝑘 ) ∈ ℂ ) |
| 18 | 17 | mul01d | ⊢ ( 𝑘 ∈ ( 0 ... 3 ) → ( ( i ↑ 𝑘 ) · 0 ) = 0 ) |
| 19 | 13 18 | eqtrid | ⊢ ( 𝑘 ∈ ( 0 ... 3 ) → ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ ∅ ∧ 0 ≤ ( ℜ ‘ ( 𝐴 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐴 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) = 0 ) |
| 20 | 19 | sumeq2i | ⊢ Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ ∅ ∧ 0 ≤ ( ℜ ‘ ( 𝐴 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐴 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) = Σ 𝑘 ∈ ( 0 ... 3 ) 0 |
| 21 | fzfi | ⊢ ( 0 ... 3 ) ∈ Fin | |
| 22 | 21 | olci | ⊢ ( ( 0 ... 3 ) ⊆ ( ℤ≥ ‘ 0 ) ∨ ( 0 ... 3 ) ∈ Fin ) |
| 23 | sumz | ⊢ ( ( ( 0 ... 3 ) ⊆ ( ℤ≥ ‘ 0 ) ∨ ( 0 ... 3 ) ∈ Fin ) → Σ 𝑘 ∈ ( 0 ... 3 ) 0 = 0 ) | |
| 24 | 22 23 | ax-mp | ⊢ Σ 𝑘 ∈ ( 0 ... 3 ) 0 = 0 |
| 25 | 20 24 | eqtri | ⊢ Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ ∅ ∧ 0 ≤ ( ℜ ‘ ( 𝐴 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐴 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) = 0 |
| 26 | 2 25 | eqtri | ⊢ ∫ ∅ 𝐴 d 𝑥 = 0 |