This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every (possibly proper) subclass of a class A with a well-founded set-like relation R has a minimal element. This is a very strong generalization of tz6.26 and tz7.5 . (Contributed by Scott Fenton, 4-Feb-2011) (Revised by Mario Carneiro, 26-Jun-2015) (Revised by Scott Fenton, 27-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | frmin | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) ) → ∃ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frss | ⊢ ( 𝐵 ⊆ 𝐴 → ( 𝑅 Fr 𝐴 → 𝑅 Fr 𝐵 ) ) | |
| 2 | sess2 | ⊢ ( 𝐵 ⊆ 𝐴 → ( 𝑅 Se 𝐴 → 𝑅 Se 𝐵 ) ) | |
| 3 | 1 2 | anim12d | ⊢ ( 𝐵 ⊆ 𝐴 → ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝑅 Fr 𝐵 ∧ 𝑅 Se 𝐵 ) ) ) |
| 4 | n0 | ⊢ ( 𝐵 ≠ ∅ ↔ ∃ 𝑏 𝑏 ∈ 𝐵 ) | |
| 5 | predeq3 | ⊢ ( 𝑦 = 𝑏 → Pred ( 𝑅 , 𝐵 , 𝑦 ) = Pred ( 𝑅 , 𝐵 , 𝑏 ) ) | |
| 6 | 5 | eqeq1d | ⊢ ( 𝑦 = 𝑏 → ( Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ↔ Pred ( 𝑅 , 𝐵 , 𝑏 ) = ∅ ) ) |
| 7 | 6 | rspcev | ⊢ ( ( 𝑏 ∈ 𝐵 ∧ Pred ( 𝑅 , 𝐵 , 𝑏 ) = ∅ ) → ∃ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) |
| 8 | 7 | ex | ⊢ ( 𝑏 ∈ 𝐵 → ( Pred ( 𝑅 , 𝐵 , 𝑏 ) = ∅ → ∃ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) ) |
| 9 | 8 | adantl | ⊢ ( ( ( 𝑅 Fr 𝐵 ∧ 𝑅 Se 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → ( Pred ( 𝑅 , 𝐵 , 𝑏 ) = ∅ → ∃ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) ) |
| 10 | predres | ⊢ Pred ( 𝑅 , 𝐵 , 𝑏 ) = Pred ( ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) | |
| 11 | relres | ⊢ Rel ( 𝑅 ↾ 𝐵 ) | |
| 12 | ssttrcl | ⊢ ( Rel ( 𝑅 ↾ 𝐵 ) → ( 𝑅 ↾ 𝐵 ) ⊆ t++ ( 𝑅 ↾ 𝐵 ) ) | |
| 13 | 11 12 | ax-mp | ⊢ ( 𝑅 ↾ 𝐵 ) ⊆ t++ ( 𝑅 ↾ 𝐵 ) |
| 14 | predrelss | ⊢ ( ( 𝑅 ↾ 𝐵 ) ⊆ t++ ( 𝑅 ↾ 𝐵 ) → Pred ( ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ⊆ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ) | |
| 15 | 13 14 | ax-mp | ⊢ Pred ( ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ⊆ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) |
| 16 | 10 15 | eqsstri | ⊢ Pred ( 𝑅 , 𝐵 , 𝑏 ) ⊆ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) |
| 17 | ssn0 | ⊢ ( ( Pred ( 𝑅 , 𝐵 , 𝑏 ) ⊆ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ∧ Pred ( 𝑅 , 𝐵 , 𝑏 ) ≠ ∅ ) → Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ≠ ∅ ) | |
| 18 | 16 17 | mpan | ⊢ ( Pred ( 𝑅 , 𝐵 , 𝑏 ) ≠ ∅ → Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ≠ ∅ ) |
| 19 | predss | ⊢ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ⊆ 𝐵 | |
| 20 | 18 19 | jctil | ⊢ ( Pred ( 𝑅 , 𝐵 , 𝑏 ) ≠ ∅ → ( Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ⊆ 𝐵 ∧ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ≠ ∅ ) ) |
| 21 | dffr4 | ⊢ ( 𝑅 Fr 𝐵 ↔ ∀ 𝑐 ( ( 𝑐 ⊆ 𝐵 ∧ 𝑐 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑐 Pred ( 𝑅 , 𝑐 , 𝑦 ) = ∅ ) ) | |
| 22 | 21 | biimpi | ⊢ ( 𝑅 Fr 𝐵 → ∀ 𝑐 ( ( 𝑐 ⊆ 𝐵 ∧ 𝑐 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑐 Pred ( 𝑅 , 𝑐 , 𝑦 ) = ∅ ) ) |
| 23 | ttrclse | ⊢ ( 𝑅 Se 𝐵 → t++ ( 𝑅 ↾ 𝐵 ) Se 𝐵 ) | |
| 24 | setlikespec | ⊢ ( ( 𝑏 ∈ 𝐵 ∧ t++ ( 𝑅 ↾ 𝐵 ) Se 𝐵 ) → Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ∈ V ) | |
| 25 | 23 24 | sylan2 | ⊢ ( ( 𝑏 ∈ 𝐵 ∧ 𝑅 Se 𝐵 ) → Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ∈ V ) |
| 26 | 25 | ancoms | ⊢ ( ( 𝑅 Se 𝐵 ∧ 𝑏 ∈ 𝐵 ) → Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ∈ V ) |
| 27 | sseq1 | ⊢ ( 𝑐 = Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) → ( 𝑐 ⊆ 𝐵 ↔ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ⊆ 𝐵 ) ) | |
| 28 | neeq1 | ⊢ ( 𝑐 = Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) → ( 𝑐 ≠ ∅ ↔ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ≠ ∅ ) ) | |
| 29 | 27 28 | anbi12d | ⊢ ( 𝑐 = Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) → ( ( 𝑐 ⊆ 𝐵 ∧ 𝑐 ≠ ∅ ) ↔ ( Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ⊆ 𝐵 ∧ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ≠ ∅ ) ) ) |
| 30 | predeq2 | ⊢ ( 𝑐 = Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) → Pred ( 𝑅 , 𝑐 , 𝑦 ) = Pred ( 𝑅 , Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) , 𝑦 ) ) | |
| 31 | 30 | eqeq1d | ⊢ ( 𝑐 = Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) → ( Pred ( 𝑅 , 𝑐 , 𝑦 ) = ∅ ↔ Pred ( 𝑅 , Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) , 𝑦 ) = ∅ ) ) |
| 32 | 31 | rexeqbi1dv | ⊢ ( 𝑐 = Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) → ( ∃ 𝑦 ∈ 𝑐 Pred ( 𝑅 , 𝑐 , 𝑦 ) = ∅ ↔ ∃ 𝑦 ∈ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) Pred ( 𝑅 , Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) , 𝑦 ) = ∅ ) ) |
| 33 | 29 32 | imbi12d | ⊢ ( 𝑐 = Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) → ( ( ( 𝑐 ⊆ 𝐵 ∧ 𝑐 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑐 Pred ( 𝑅 , 𝑐 , 𝑦 ) = ∅ ) ↔ ( ( Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ⊆ 𝐵 ∧ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ≠ ∅ ) → ∃ 𝑦 ∈ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) Pred ( 𝑅 , Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) , 𝑦 ) = ∅ ) ) ) |
| 34 | 33 | spcgv | ⊢ ( Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ∈ V → ( ∀ 𝑐 ( ( 𝑐 ⊆ 𝐵 ∧ 𝑐 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑐 Pred ( 𝑅 , 𝑐 , 𝑦 ) = ∅ ) → ( ( Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ⊆ 𝐵 ∧ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ≠ ∅ ) → ∃ 𝑦 ∈ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) Pred ( 𝑅 , Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) , 𝑦 ) = ∅ ) ) ) |
| 35 | 34 | impcom | ⊢ ( ( ∀ 𝑐 ( ( 𝑐 ⊆ 𝐵 ∧ 𝑐 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑐 Pred ( 𝑅 , 𝑐 , 𝑦 ) = ∅ ) ∧ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ∈ V ) → ( ( Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ⊆ 𝐵 ∧ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ≠ ∅ ) → ∃ 𝑦 ∈ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) Pred ( 𝑅 , Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) , 𝑦 ) = ∅ ) ) |
| 36 | 22 26 35 | syl2an | ⊢ ( ( 𝑅 Fr 𝐵 ∧ ( 𝑅 Se 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ⊆ 𝐵 ∧ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ≠ ∅ ) → ∃ 𝑦 ∈ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) Pred ( 𝑅 , Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) , 𝑦 ) = ∅ ) ) |
| 37 | 36 | anassrs | ⊢ ( ( ( 𝑅 Fr 𝐵 ∧ 𝑅 Se 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → ( ( Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ⊆ 𝐵 ∧ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ≠ ∅ ) → ∃ 𝑦 ∈ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) Pred ( 𝑅 , Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) , 𝑦 ) = ∅ ) ) |
| 38 | predres | ⊢ Pred ( 𝑅 , 𝐵 , 𝑦 ) = Pred ( ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑦 ) | |
| 39 | predrelss | ⊢ ( ( 𝑅 ↾ 𝐵 ) ⊆ t++ ( 𝑅 ↾ 𝐵 ) → Pred ( ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑦 ) ⊆ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑦 ) ) | |
| 40 | 13 39 | ax-mp | ⊢ Pred ( ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑦 ) ⊆ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑦 ) |
| 41 | 38 40 | eqsstri | ⊢ Pred ( 𝑅 , 𝐵 , 𝑦 ) ⊆ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑦 ) |
| 42 | inss1 | ⊢ ( t++ ( 𝑅 ↾ 𝐵 ) ∩ ( 𝐵 × 𝐵 ) ) ⊆ t++ ( 𝑅 ↾ 𝐵 ) | |
| 43 | coss1 | ⊢ ( ( t++ ( 𝑅 ↾ 𝐵 ) ∩ ( 𝐵 × 𝐵 ) ) ⊆ t++ ( 𝑅 ↾ 𝐵 ) → ( ( t++ ( 𝑅 ↾ 𝐵 ) ∩ ( 𝐵 × 𝐵 ) ) ∘ ( t++ ( 𝑅 ↾ 𝐵 ) ∩ ( 𝐵 × 𝐵 ) ) ) ⊆ ( t++ ( 𝑅 ↾ 𝐵 ) ∘ ( t++ ( 𝑅 ↾ 𝐵 ) ∩ ( 𝐵 × 𝐵 ) ) ) ) | |
| 44 | 42 43 | ax-mp | ⊢ ( ( t++ ( 𝑅 ↾ 𝐵 ) ∩ ( 𝐵 × 𝐵 ) ) ∘ ( t++ ( 𝑅 ↾ 𝐵 ) ∩ ( 𝐵 × 𝐵 ) ) ) ⊆ ( t++ ( 𝑅 ↾ 𝐵 ) ∘ ( t++ ( 𝑅 ↾ 𝐵 ) ∩ ( 𝐵 × 𝐵 ) ) ) |
| 45 | coss2 | ⊢ ( ( t++ ( 𝑅 ↾ 𝐵 ) ∩ ( 𝐵 × 𝐵 ) ) ⊆ t++ ( 𝑅 ↾ 𝐵 ) → ( t++ ( 𝑅 ↾ 𝐵 ) ∘ ( t++ ( 𝑅 ↾ 𝐵 ) ∩ ( 𝐵 × 𝐵 ) ) ) ⊆ ( t++ ( 𝑅 ↾ 𝐵 ) ∘ t++ ( 𝑅 ↾ 𝐵 ) ) ) | |
| 46 | 42 45 | ax-mp | ⊢ ( t++ ( 𝑅 ↾ 𝐵 ) ∘ ( t++ ( 𝑅 ↾ 𝐵 ) ∩ ( 𝐵 × 𝐵 ) ) ) ⊆ ( t++ ( 𝑅 ↾ 𝐵 ) ∘ t++ ( 𝑅 ↾ 𝐵 ) ) |
| 47 | 44 46 | sstri | ⊢ ( ( t++ ( 𝑅 ↾ 𝐵 ) ∩ ( 𝐵 × 𝐵 ) ) ∘ ( t++ ( 𝑅 ↾ 𝐵 ) ∩ ( 𝐵 × 𝐵 ) ) ) ⊆ ( t++ ( 𝑅 ↾ 𝐵 ) ∘ t++ ( 𝑅 ↾ 𝐵 ) ) |
| 48 | ttrcltr | ⊢ ( t++ ( 𝑅 ↾ 𝐵 ) ∘ t++ ( 𝑅 ↾ 𝐵 ) ) ⊆ t++ ( 𝑅 ↾ 𝐵 ) | |
| 49 | 47 48 | sstri | ⊢ ( ( t++ ( 𝑅 ↾ 𝐵 ) ∩ ( 𝐵 × 𝐵 ) ) ∘ ( t++ ( 𝑅 ↾ 𝐵 ) ∩ ( 𝐵 × 𝐵 ) ) ) ⊆ t++ ( 𝑅 ↾ 𝐵 ) |
| 50 | predtrss | ⊢ ( ( ( ( t++ ( 𝑅 ↾ 𝐵 ) ∩ ( 𝐵 × 𝐵 ) ) ∘ ( t++ ( 𝑅 ↾ 𝐵 ) ∩ ( 𝐵 × 𝐵 ) ) ) ⊆ t++ ( 𝑅 ↾ 𝐵 ) ∧ 𝑦 ∈ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ∧ 𝑏 ∈ 𝐵 ) → Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑦 ) ⊆ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ) | |
| 51 | 49 50 | mp3an1 | ⊢ ( ( 𝑦 ∈ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ∧ 𝑏 ∈ 𝐵 ) → Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑦 ) ⊆ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ) |
| 52 | 41 51 | sstrid | ⊢ ( ( 𝑦 ∈ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ∧ 𝑏 ∈ 𝐵 ) → Pred ( 𝑅 , 𝐵 , 𝑦 ) ⊆ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ) |
| 53 | sspred | ⊢ ( ( Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ⊆ 𝐵 ∧ Pred ( 𝑅 , 𝐵 , 𝑦 ) ⊆ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ) → Pred ( 𝑅 , 𝐵 , 𝑦 ) = Pred ( 𝑅 , Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) , 𝑦 ) ) | |
| 54 | 19 52 53 | sylancr | ⊢ ( ( 𝑦 ∈ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ∧ 𝑏 ∈ 𝐵 ) → Pred ( 𝑅 , 𝐵 , 𝑦 ) = Pred ( 𝑅 , Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) , 𝑦 ) ) |
| 55 | 54 | ancoms | ⊢ ( ( 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ) → Pred ( 𝑅 , 𝐵 , 𝑦 ) = Pred ( 𝑅 , Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) , 𝑦 ) ) |
| 56 | 55 | eqeq1d | ⊢ ( ( 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ) → ( Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ↔ Pred ( 𝑅 , Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) , 𝑦 ) = ∅ ) ) |
| 57 | 56 | rexbidva | ⊢ ( 𝑏 ∈ 𝐵 → ( ∃ 𝑦 ∈ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ↔ ∃ 𝑦 ∈ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) Pred ( 𝑅 , Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) , 𝑦 ) = ∅ ) ) |
| 58 | ssrexv | ⊢ ( Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ⊆ 𝐵 → ( ∃ 𝑦 ∈ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ → ∃ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) ) | |
| 59 | 19 58 | ax-mp | ⊢ ( ∃ 𝑦 ∈ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ → ∃ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) |
| 60 | 57 59 | biimtrrdi | ⊢ ( 𝑏 ∈ 𝐵 → ( ∃ 𝑦 ∈ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) Pred ( 𝑅 , Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) , 𝑦 ) = ∅ → ∃ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) ) |
| 61 | 60 | adantl | ⊢ ( ( ( 𝑅 Fr 𝐵 ∧ 𝑅 Se 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → ( ∃ 𝑦 ∈ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) Pred ( 𝑅 , Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) , 𝑦 ) = ∅ → ∃ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) ) |
| 62 | 37 61 | syld | ⊢ ( ( ( 𝑅 Fr 𝐵 ∧ 𝑅 Se 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → ( ( Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ⊆ 𝐵 ∧ Pred ( t++ ( 𝑅 ↾ 𝐵 ) , 𝐵 , 𝑏 ) ≠ ∅ ) → ∃ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) ) |
| 63 | 20 62 | syl5 | ⊢ ( ( ( 𝑅 Fr 𝐵 ∧ 𝑅 Se 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → ( Pred ( 𝑅 , 𝐵 , 𝑏 ) ≠ ∅ → ∃ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) ) |
| 64 | 9 63 | pm2.61dne | ⊢ ( ( ( 𝑅 Fr 𝐵 ∧ 𝑅 Se 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) |
| 65 | 64 | ex | ⊢ ( ( 𝑅 Fr 𝐵 ∧ 𝑅 Se 𝐵 ) → ( 𝑏 ∈ 𝐵 → ∃ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) ) |
| 66 | 65 | exlimdv | ⊢ ( ( 𝑅 Fr 𝐵 ∧ 𝑅 Se 𝐵 ) → ( ∃ 𝑏 𝑏 ∈ 𝐵 → ∃ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) ) |
| 67 | 4 66 | biimtrid | ⊢ ( ( 𝑅 Fr 𝐵 ∧ 𝑅 Se 𝐵 ) → ( 𝐵 ≠ ∅ → ∃ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) ) |
| 68 | 3 67 | syl6com | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝐵 ⊆ 𝐴 → ( 𝐵 ≠ ∅ → ∃ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) ) ) |
| 69 | 68 | imp32 | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) ) → ∃ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) |