This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Predecessor class is unaffected by restriction to the base class. (Contributed by Scott Fenton, 25-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | predres | ⊢ Pred ( 𝑅 , 𝐴 , 𝑋 ) = Pred ( ( 𝑅 ↾ 𝐴 ) , 𝐴 , 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 | ⊢ { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑋 } ⊆ 𝐴 | |
| 2 | sseqin2 | ⊢ ( { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑋 } ⊆ 𝐴 ↔ ( 𝐴 ∩ { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑋 } ) = { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑋 } ) | |
| 3 | 1 2 | mpbi | ⊢ ( 𝐴 ∩ { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑋 } ) = { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑋 } |
| 4 | dfrab2 | ⊢ { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑋 } = ( { 𝑦 ∣ 𝑦 𝑅 𝑋 } ∩ 𝐴 ) | |
| 5 | 3 4 | eqtr2i | ⊢ ( { 𝑦 ∣ 𝑦 𝑅 𝑋 } ∩ 𝐴 ) = ( 𝐴 ∩ { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑋 } ) |
| 6 | iniseg | ⊢ ( 𝑋 ∈ V → ( ◡ 𝑅 “ { 𝑋 } ) = { 𝑦 ∣ 𝑦 𝑅 𝑋 } ) | |
| 7 | 6 | ineq2d | ⊢ ( 𝑋 ∈ V → ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) = ( 𝐴 ∩ { 𝑦 ∣ 𝑦 𝑅 𝑋 } ) ) |
| 8 | incom | ⊢ ( 𝐴 ∩ { 𝑦 ∣ 𝑦 𝑅 𝑋 } ) = ( { 𝑦 ∣ 𝑦 𝑅 𝑋 } ∩ 𝐴 ) | |
| 9 | 7 8 | eqtrdi | ⊢ ( 𝑋 ∈ V → ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) = ( { 𝑦 ∣ 𝑦 𝑅 𝑋 } ∩ 𝐴 ) ) |
| 10 | iniseg | ⊢ ( 𝑋 ∈ V → ( ◡ ( 𝑅 ↾ 𝐴 ) “ { 𝑋 } ) = { 𝑦 ∣ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑋 } ) | |
| 11 | brres | ⊢ ( 𝑋 ∈ V → ( 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑋 ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑋 ) ) ) | |
| 12 | 11 | abbidv | ⊢ ( 𝑋 ∈ V → { 𝑦 ∣ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑋 } = { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑋 ) } ) |
| 13 | df-rab | ⊢ { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑋 } = { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑋 ) } | |
| 14 | 12 13 | eqtr4di | ⊢ ( 𝑋 ∈ V → { 𝑦 ∣ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑋 } = { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑋 } ) |
| 15 | 10 14 | eqtrd | ⊢ ( 𝑋 ∈ V → ( ◡ ( 𝑅 ↾ 𝐴 ) “ { 𝑋 } ) = { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑋 } ) |
| 16 | 15 | ineq2d | ⊢ ( 𝑋 ∈ V → ( 𝐴 ∩ ( ◡ ( 𝑅 ↾ 𝐴 ) “ { 𝑋 } ) ) = ( 𝐴 ∩ { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑋 } ) ) |
| 17 | 5 9 16 | 3eqtr4a | ⊢ ( 𝑋 ∈ V → ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) = ( 𝐴 ∩ ( ◡ ( 𝑅 ↾ 𝐴 ) “ { 𝑋 } ) ) ) |
| 18 | df-pred | ⊢ Pred ( 𝑅 , 𝐴 , 𝑋 ) = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) | |
| 19 | df-pred | ⊢ Pred ( ( 𝑅 ↾ 𝐴 ) , 𝐴 , 𝑋 ) = ( 𝐴 ∩ ( ◡ ( 𝑅 ↾ 𝐴 ) “ { 𝑋 } ) ) | |
| 20 | 17 18 19 | 3eqtr4g | ⊢ ( 𝑋 ∈ V → Pred ( 𝑅 , 𝐴 , 𝑋 ) = Pred ( ( 𝑅 ↾ 𝐴 ) , 𝐴 , 𝑋 ) ) |
| 21 | predprc | ⊢ ( ¬ 𝑋 ∈ V → Pred ( 𝑅 , 𝐴 , 𝑋 ) = ∅ ) | |
| 22 | predprc | ⊢ ( ¬ 𝑋 ∈ V → Pred ( ( 𝑅 ↾ 𝐴 ) , 𝐴 , 𝑋 ) = ∅ ) | |
| 23 | 21 22 | eqtr4d | ⊢ ( ¬ 𝑋 ∈ V → Pred ( 𝑅 , 𝐴 , 𝑋 ) = Pred ( ( 𝑅 ↾ 𝐴 ) , 𝐴 , 𝑋 ) ) |
| 24 | 20 23 | pm2.61i | ⊢ Pred ( 𝑅 , 𝐴 , 𝑋 ) = Pred ( ( 𝑅 ↾ 𝐴 ) , 𝐴 , 𝑋 ) |