This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset theorem for the well-founded predicate. Exercise 1 of TakeutiZaring p. 31. (Contributed by NM, 3-Apr-1994) (Proof shortened by Andrew Salmon, 25-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | frss | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑅 Fr 𝐵 → 𝑅 Fr 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 | ⊢ ( 𝑥 ⊆ 𝐴 → ( 𝐴 ⊆ 𝐵 → 𝑥 ⊆ 𝐵 ) ) | |
| 2 | 1 | com12 | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐵 ) ) |
| 3 | 2 | anim1d | ⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ( 𝑥 ⊆ 𝐵 ∧ 𝑥 ≠ ∅ ) ) ) |
| 4 | 3 | imim1d | ⊢ ( 𝐴 ⊆ 𝐵 → ( ( ( 𝑥 ⊆ 𝐵 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ) ) |
| 5 | 4 | alimdv | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∀ 𝑥 ( ( 𝑥 ⊆ 𝐵 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) → ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ) ) |
| 6 | df-fr | ⊢ ( 𝑅 Fr 𝐵 ↔ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐵 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ) | |
| 7 | df-fr | ⊢ ( 𝑅 Fr 𝐴 ↔ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ) | |
| 8 | 5 6 7 | 3imtr4g | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑅 Fr 𝐵 → 𝑅 Fr 𝐴 ) ) |