This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Another subset/predecessor class relationship. (Contributed by Scott Fenton, 6-Feb-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sspred | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐵 ) → Pred ( 𝑅 , 𝐴 , 𝑋 ) = Pred ( 𝑅 , 𝐵 , 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqin2 | ⊢ ( 𝐵 ⊆ 𝐴 ↔ ( 𝐴 ∩ 𝐵 ) = 𝐵 ) | |
| 2 | df-pred | ⊢ Pred ( 𝑅 , 𝐴 , 𝑋 ) = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) | |
| 3 | 2 | sseq1i | ⊢ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐵 ↔ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ⊆ 𝐵 ) |
| 4 | dfss2 | ⊢ ( ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ⊆ 𝐵 ↔ ( ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ∩ 𝐵 ) = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ) | |
| 5 | in32 | ⊢ ( ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ∩ 𝐵 ) = ( ( 𝐴 ∩ 𝐵 ) ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) | |
| 6 | 5 | eqeq1i | ⊢ ( ( ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ∩ 𝐵 ) = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ↔ ( ( 𝐴 ∩ 𝐵 ) ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ) |
| 7 | 3 4 6 | 3bitri | ⊢ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐵 ↔ ( ( 𝐴 ∩ 𝐵 ) ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ) |
| 8 | ineq1 | ⊢ ( ( 𝐴 ∩ 𝐵 ) = 𝐵 → ( ( 𝐴 ∩ 𝐵 ) ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) = ( 𝐵 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ) | |
| 9 | 8 | eqeq1d | ⊢ ( ( 𝐴 ∩ 𝐵 ) = 𝐵 → ( ( ( 𝐴 ∩ 𝐵 ) ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ↔ ( 𝐵 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ) ) |
| 10 | 9 | biimpa | ⊢ ( ( ( 𝐴 ∩ 𝐵 ) = 𝐵 ∧ ( ( 𝐴 ∩ 𝐵 ) ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ) → ( 𝐵 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ) |
| 11 | df-pred | ⊢ Pred ( 𝑅 , 𝐵 , 𝑋 ) = ( 𝐵 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) | |
| 12 | 10 11 2 | 3eqtr4g | ⊢ ( ( ( 𝐴 ∩ 𝐵 ) = 𝐵 ∧ ( ( 𝐴 ∩ 𝐵 ) ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ) → Pred ( 𝑅 , 𝐵 , 𝑋 ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) ) |
| 13 | 12 | eqcomd | ⊢ ( ( ( 𝐴 ∩ 𝐵 ) = 𝐵 ∧ ( ( 𝐴 ∩ 𝐵 ) ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ) → Pred ( 𝑅 , 𝐴 , 𝑋 ) = Pred ( 𝑅 , 𝐵 , 𝑋 ) ) |
| 14 | 1 7 13 | syl2anb | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐵 ) → Pred ( 𝑅 , 𝐴 , 𝑋 ) = Pred ( 𝑅 , 𝐵 , 𝑋 ) ) |