This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sess2 | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑅 Se 𝐵 → 𝑅 Se 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssralv | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 { 𝑦 ∈ 𝐵 ∣ 𝑦 𝑅 𝑥 } ∈ V → ∀ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝑦 𝑅 𝑥 } ∈ V ) ) | |
| 2 | rabss2 | ⊢ ( 𝐴 ⊆ 𝐵 → { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ⊆ { 𝑦 ∈ 𝐵 ∣ 𝑦 𝑅 𝑥 } ) | |
| 3 | ssexg | ⊢ ( ( { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ⊆ { 𝑦 ∈ 𝐵 ∣ 𝑦 𝑅 𝑥 } ∧ { 𝑦 ∈ 𝐵 ∣ 𝑦 𝑅 𝑥 } ∈ V ) → { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ∈ V ) | |
| 4 | 3 | ex | ⊢ ( { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ⊆ { 𝑦 ∈ 𝐵 ∣ 𝑦 𝑅 𝑥 } → ( { 𝑦 ∈ 𝐵 ∣ 𝑦 𝑅 𝑥 } ∈ V → { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ∈ V ) ) |
| 5 | 2 4 | syl | ⊢ ( 𝐴 ⊆ 𝐵 → ( { 𝑦 ∈ 𝐵 ∣ 𝑦 𝑅 𝑥 } ∈ V → { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ∈ V ) ) |
| 6 | 5 | ralimdv | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∀ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝑦 𝑅 𝑥 } ∈ V → ∀ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ∈ V ) ) |
| 7 | 1 6 | syld | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 { 𝑦 ∈ 𝐵 ∣ 𝑦 𝑅 𝑥 } ∈ V → ∀ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ∈ V ) ) |
| 8 | df-se | ⊢ ( 𝑅 Se 𝐵 ↔ ∀ 𝑥 ∈ 𝐵 { 𝑦 ∈ 𝐵 ∣ 𝑦 𝑅 𝑥 } ∈ V ) | |
| 9 | df-se | ⊢ ( 𝑅 Se 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ∈ V ) | |
| 10 | 7 8 9 | 3imtr4g | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑅 Se 𝐵 → 𝑅 Se 𝐴 ) ) |