This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of well-founded relation. (Contributed by Scott Fenton, 2-Feb-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dffr4 | ⊢ ( 𝑅 Fr 𝐴 ↔ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝑥 , 𝑦 ) = ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffr3 | ⊢ ( 𝑅 Fr 𝐴 ↔ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ) ) | |
| 2 | df-pred | ⊢ Pred ( 𝑅 , 𝑥 , 𝑦 ) = ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) | |
| 3 | 2 | eqeq1i | ⊢ ( Pred ( 𝑅 , 𝑥 , 𝑦 ) = ∅ ↔ ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ) |
| 4 | 3 | rexbii | ⊢ ( ∃ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝑥 , 𝑦 ) = ∅ ↔ ∃ 𝑦 ∈ 𝑥 ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ) |
| 5 | 4 | imbi2i | ⊢ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝑥 , 𝑦 ) = ∅ ) ↔ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ) ) |
| 6 | 5 | albii | ⊢ ( ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝑥 , 𝑦 ) = ∅ ) ↔ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ) ) |
| 7 | 1 6 | bitr4i | ⊢ ( 𝑅 Fr 𝐴 ↔ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝑥 , 𝑦 ) = ∅ ) ) |