This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If all the terms of two finite products are nonnegative and compare, so do the two products. (Contributed by Glauco Siliprandi, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodle.kph | ⊢ Ⅎ 𝑘 𝜑 | |
| fprodle.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | ||
| fprodle.b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | ||
| fprodle.0l3b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 0 ≤ 𝐵 ) | ||
| fprodle.c | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) | ||
| fprodle.blec | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ≤ 𝐶 ) | ||
| Assertion | fprodle | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 ≤ ∏ 𝑘 ∈ 𝐴 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodle.kph | ⊢ Ⅎ 𝑘 𝜑 | |
| 2 | fprodle.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 3 | fprodle.b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | |
| 4 | fprodle.0l3b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 0 ≤ 𝐵 ) | |
| 5 | fprodle.c | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) | |
| 6 | fprodle.blec | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ≤ 𝐶 ) | |
| 7 | 1red | ⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) → 1 ∈ ℝ ) | |
| 8 | nfra1 | ⊢ Ⅎ 𝑘 ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 | |
| 9 | 1 8 | nfan | ⊢ Ⅎ 𝑘 ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) |
| 10 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) → 𝐴 ∈ Fin ) |
| 11 | 5 | adantlr | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) |
| 12 | 3 | adantlr | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 13 | rspa | ⊢ ( ( ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ≠ 0 ) | |
| 14 | 13 | adantll | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ≠ 0 ) |
| 15 | 11 12 14 | redivcld | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) ∧ 𝑘 ∈ 𝐴 ) → ( 𝐶 / 𝐵 ) ∈ ℝ ) |
| 16 | 9 10 15 | fprodreclf | ⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) → ∏ 𝑘 ∈ 𝐴 ( 𝐶 / 𝐵 ) ∈ ℝ ) |
| 17 | 1 2 3 | fprodreclf | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 ∈ ℝ ) |
| 18 | 17 | adantr | ⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) → ∏ 𝑘 ∈ 𝐴 𝐵 ∈ ℝ ) |
| 19 | 1 2 3 4 | fprodge0 | ⊢ ( 𝜑 → 0 ≤ ∏ 𝑘 ∈ 𝐴 𝐵 ) |
| 20 | 19 | adantr | ⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) → 0 ≤ ∏ 𝑘 ∈ 𝐴 𝐵 ) |
| 21 | 4 | adantlr | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) ∧ 𝑘 ∈ 𝐴 ) → 0 ≤ 𝐵 ) |
| 22 | 12 21 14 | ne0gt0d | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) ∧ 𝑘 ∈ 𝐴 ) → 0 < 𝐵 ) |
| 23 | 12 22 | elrpd | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ+ ) |
| 24 | 6 | adantlr | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ≤ 𝐶 ) |
| 25 | divge1 | ⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ≤ 𝐶 ) → 1 ≤ ( 𝐶 / 𝐵 ) ) | |
| 26 | 23 11 24 25 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) ∧ 𝑘 ∈ 𝐴 ) → 1 ≤ ( 𝐶 / 𝐵 ) ) |
| 27 | 9 10 15 26 | fprodge1 | ⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) → 1 ≤ ∏ 𝑘 ∈ 𝐴 ( 𝐶 / 𝐵 ) ) |
| 28 | 7 16 18 20 27 | lemul2ad | ⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) → ( ∏ 𝑘 ∈ 𝐴 𝐵 · 1 ) ≤ ( ∏ 𝑘 ∈ 𝐴 𝐵 · ∏ 𝑘 ∈ 𝐴 ( 𝐶 / 𝐵 ) ) ) |
| 29 | 3 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 30 | 1 2 29 | fprodclf | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ ) |
| 31 | 30 | mulridd | ⊢ ( 𝜑 → ( ∏ 𝑘 ∈ 𝐴 𝐵 · 1 ) = ∏ 𝑘 ∈ 𝐴 𝐵 ) |
| 32 | 31 | adantr | ⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) → ( ∏ 𝑘 ∈ 𝐴 𝐵 · 1 ) = ∏ 𝑘 ∈ 𝐴 𝐵 ) |
| 33 | 5 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 34 | 33 | adantlr | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 35 | 29 | adantlr | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 36 | 9 10 34 35 14 | fproddivf | ⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) → ∏ 𝑘 ∈ 𝐴 ( 𝐶 / 𝐵 ) = ( ∏ 𝑘 ∈ 𝐴 𝐶 / ∏ 𝑘 ∈ 𝐴 𝐵 ) ) |
| 37 | 36 | oveq2d | ⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) → ( ∏ 𝑘 ∈ 𝐴 𝐵 · ∏ 𝑘 ∈ 𝐴 ( 𝐶 / 𝐵 ) ) = ( ∏ 𝑘 ∈ 𝐴 𝐵 · ( ∏ 𝑘 ∈ 𝐴 𝐶 / ∏ 𝑘 ∈ 𝐴 𝐵 ) ) ) |
| 38 | 1 2 33 | fprodclf | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐶 ∈ ℂ ) |
| 39 | 38 | adantr | ⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) → ∏ 𝑘 ∈ 𝐴 𝐶 ∈ ℂ ) |
| 40 | 30 | adantr | ⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) → ∏ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ ) |
| 41 | 9 10 35 14 | fprodn0f | ⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) → ∏ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) |
| 42 | 39 40 41 | divcan2d | ⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) → ( ∏ 𝑘 ∈ 𝐴 𝐵 · ( ∏ 𝑘 ∈ 𝐴 𝐶 / ∏ 𝑘 ∈ 𝐴 𝐵 ) ) = ∏ 𝑘 ∈ 𝐴 𝐶 ) |
| 43 | 37 42 | eqtrd | ⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) → ( ∏ 𝑘 ∈ 𝐴 𝐵 · ∏ 𝑘 ∈ 𝐴 ( 𝐶 / 𝐵 ) ) = ∏ 𝑘 ∈ 𝐴 𝐶 ) |
| 44 | 28 32 43 | 3brtr3d | ⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) → ∏ 𝑘 ∈ 𝐴 𝐵 ≤ ∏ 𝑘 ∈ 𝐴 𝐶 ) |
| 45 | nne | ⊢ ( ¬ 𝐵 ≠ 0 ↔ 𝐵 = 0 ) | |
| 46 | 45 | rexbii | ⊢ ( ∃ 𝑘 ∈ 𝐴 ¬ 𝐵 ≠ 0 ↔ ∃ 𝑘 ∈ 𝐴 𝐵 = 0 ) |
| 47 | rexnal | ⊢ ( ∃ 𝑘 ∈ 𝐴 ¬ 𝐵 ≠ 0 ↔ ¬ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) | |
| 48 | nfv | ⊢ Ⅎ 𝑗 𝐵 = 0 | |
| 49 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 | |
| 50 | 49 | nfeq1 | ⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 0 |
| 51 | csbeq1a | ⊢ ( 𝑘 = 𝑗 → 𝐵 = ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) | |
| 52 | 51 | eqeq1d | ⊢ ( 𝑘 = 𝑗 → ( 𝐵 = 0 ↔ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 0 ) ) |
| 53 | 48 50 52 | cbvrexw | ⊢ ( ∃ 𝑘 ∈ 𝐴 𝐵 = 0 ↔ ∃ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 0 ) |
| 54 | 46 47 53 | 3bitr3i | ⊢ ( ¬ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ↔ ∃ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 0 ) |
| 55 | nfv | ⊢ Ⅎ 𝑘 𝑗 ∈ 𝐴 | |
| 56 | 1 55 50 | nf3an | ⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑗 ∈ 𝐴 ∧ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 0 ) |
| 57 | 2 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ∧ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 0 ) → 𝐴 ∈ Fin ) |
| 58 | 29 | 3ad2antl1 | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ∧ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 0 ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 59 | simp2 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ∧ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 0 ) → 𝑗 ∈ 𝐴 ) | |
| 60 | 52 | biimparc | ⊢ ( ( ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 0 ∧ 𝑘 = 𝑗 ) → 𝐵 = 0 ) |
| 61 | 60 | 3ad2antl3 | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ∧ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 0 ) ∧ 𝑘 = 𝑗 ) → 𝐵 = 0 ) |
| 62 | 56 57 58 59 61 | fprodeq0g | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ∧ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 0 ) → ∏ 𝑘 ∈ 𝐴 𝐵 = 0 ) |
| 63 | 62 | rexlimdv3a | ⊢ ( 𝜑 → ( ∃ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 0 → ∏ 𝑘 ∈ 𝐴 𝐵 = 0 ) ) |
| 64 | 63 | imp | ⊢ ( ( 𝜑 ∧ ∃ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 0 ) → ∏ 𝑘 ∈ 𝐴 𝐵 = 0 ) |
| 65 | 0red | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 0 ∈ ℝ ) | |
| 66 | 65 3 5 4 6 | letrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 0 ≤ 𝐶 ) |
| 67 | 1 2 5 66 | fprodge0 | ⊢ ( 𝜑 → 0 ≤ ∏ 𝑘 ∈ 𝐴 𝐶 ) |
| 68 | 67 | adantr | ⊢ ( ( 𝜑 ∧ ∃ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 0 ) → 0 ≤ ∏ 𝑘 ∈ 𝐴 𝐶 ) |
| 69 | 64 68 | eqbrtrd | ⊢ ( ( 𝜑 ∧ ∃ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 0 ) → ∏ 𝑘 ∈ 𝐴 𝐵 ≤ ∏ 𝑘 ∈ 𝐴 𝐶 ) |
| 70 | 54 69 | sylan2b | ⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) → ∏ 𝑘 ∈ 𝐴 𝐵 ≤ ∏ 𝑘 ∈ 𝐴 𝐶 ) |
| 71 | 44 70 | pm2.61dan | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 ≤ ∏ 𝑘 ∈ 𝐴 𝐶 ) |