This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If all of the terms of a finite product are greater than or equal to 1 , so is the product. (Contributed by Glauco Siliprandi, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodge1.ph | ⊢ Ⅎ 𝑘 𝜑 | |
| fprodge1.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | ||
| fprodge1.b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | ||
| fprodge1.ge | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 1 ≤ 𝐵 ) | ||
| Assertion | fprodge1 | ⊢ ( 𝜑 → 1 ≤ ∏ 𝑘 ∈ 𝐴 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodge1.ph | ⊢ Ⅎ 𝑘 𝜑 | |
| 2 | fprodge1.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 3 | fprodge1.b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | |
| 4 | fprodge1.ge | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 1 ≤ 𝐵 ) | |
| 5 | 1xr | ⊢ 1 ∈ ℝ* | |
| 6 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 7 | 1re | ⊢ 1 ∈ ℝ | |
| 8 | icossre | ⊢ ( ( 1 ∈ ℝ ∧ +∞ ∈ ℝ* ) → ( 1 [,) +∞ ) ⊆ ℝ ) | |
| 9 | 7 6 8 | mp2an | ⊢ ( 1 [,) +∞ ) ⊆ ℝ |
| 10 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 11 | 9 10 | sstri | ⊢ ( 1 [,) +∞ ) ⊆ ℂ |
| 12 | 11 | a1i | ⊢ ( 𝜑 → ( 1 [,) +∞ ) ⊆ ℂ ) |
| 13 | 5 | a1i | ⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → 1 ∈ ℝ* ) |
| 14 | 6 | a1i | ⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → +∞ ∈ ℝ* ) |
| 15 | 9 | sseli | ⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → 𝑥 ∈ ℝ ) |
| 16 | 15 | adantr | ⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → 𝑥 ∈ ℝ ) |
| 17 | 9 | sseli | ⊢ ( 𝑦 ∈ ( 1 [,) +∞ ) → 𝑦 ∈ ℝ ) |
| 18 | 17 | adantl | ⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → 𝑦 ∈ ℝ ) |
| 19 | 16 18 | remulcld | ⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → ( 𝑥 · 𝑦 ) ∈ ℝ ) |
| 20 | 19 | rexrd | ⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → ( 𝑥 · 𝑦 ) ∈ ℝ* ) |
| 21 | 1t1e1 | ⊢ ( 1 · 1 ) = 1 | |
| 22 | 7 | a1i | ⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → 1 ∈ ℝ ) |
| 23 | 0le1 | ⊢ 0 ≤ 1 | |
| 24 | 23 | a1i | ⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → 0 ≤ 1 ) |
| 25 | icogelb | ⊢ ( ( 1 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) → 1 ≤ 𝑥 ) | |
| 26 | 5 6 25 | mp3an12 | ⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → 1 ≤ 𝑥 ) |
| 27 | 26 | adantr | ⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → 1 ≤ 𝑥 ) |
| 28 | icogelb | ⊢ ( ( 1 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → 1 ≤ 𝑦 ) | |
| 29 | 5 6 28 | mp3an12 | ⊢ ( 𝑦 ∈ ( 1 [,) +∞ ) → 1 ≤ 𝑦 ) |
| 30 | 29 | adantl | ⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → 1 ≤ 𝑦 ) |
| 31 | 22 16 22 18 24 24 27 30 | lemul12ad | ⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → ( 1 · 1 ) ≤ ( 𝑥 · 𝑦 ) ) |
| 32 | 21 31 | eqbrtrrid | ⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → 1 ≤ ( 𝑥 · 𝑦 ) ) |
| 33 | 19 | ltpnfd | ⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → ( 𝑥 · 𝑦 ) < +∞ ) |
| 34 | 13 14 20 32 33 | elicod | ⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → ( 𝑥 · 𝑦 ) ∈ ( 1 [,) +∞ ) ) |
| 35 | 34 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) ) → ( 𝑥 · 𝑦 ) ∈ ( 1 [,) +∞ ) ) |
| 36 | 5 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 1 ∈ ℝ* ) |
| 37 | 6 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → +∞ ∈ ℝ* ) |
| 38 | 3 | rexrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ* ) |
| 39 | 3 | ltpnfd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 < +∞ ) |
| 40 | 36 37 38 4 39 | elicod | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ( 1 [,) +∞ ) ) |
| 41 | 1le1 | ⊢ 1 ≤ 1 | |
| 42 | ltpnf | ⊢ ( 1 ∈ ℝ → 1 < +∞ ) | |
| 43 | 7 42 | ax-mp | ⊢ 1 < +∞ |
| 44 | elico2 | ⊢ ( ( 1 ∈ ℝ ∧ +∞ ∈ ℝ* ) → ( 1 ∈ ( 1 [,) +∞ ) ↔ ( 1 ∈ ℝ ∧ 1 ≤ 1 ∧ 1 < +∞ ) ) ) | |
| 45 | 7 6 44 | mp2an | ⊢ ( 1 ∈ ( 1 [,) +∞ ) ↔ ( 1 ∈ ℝ ∧ 1 ≤ 1 ∧ 1 < +∞ ) ) |
| 46 | 7 41 43 45 | mpbir3an | ⊢ 1 ∈ ( 1 [,) +∞ ) |
| 47 | 46 | a1i | ⊢ ( 𝜑 → 1 ∈ ( 1 [,) +∞ ) ) |
| 48 | 1 12 35 2 40 47 | fprodcllemf | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 ∈ ( 1 [,) +∞ ) ) |
| 49 | icogelb | ⊢ ( ( 1 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ∏ 𝑘 ∈ 𝐴 𝐵 ∈ ( 1 [,) +∞ ) ) → 1 ≤ ∏ 𝑘 ∈ 𝐴 𝐵 ) | |
| 50 | 5 6 48 49 | mp3an12i | ⊢ ( 𝜑 → 1 ≤ ∏ 𝑘 ∈ 𝐴 𝐵 ) |