This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any finite product containing a zero term is itself zero. (Contributed by Glauco Siliprandi, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodeq0g.kph | ⊢ Ⅎ 𝑘 𝜑 | |
| fprodeq0g.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | ||
| fprodeq0g.b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | ||
| fprodeq0g.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝐴 ) | ||
| fprodeq0g.b0 | ⊢ ( ( 𝜑 ∧ 𝑘 = 𝐶 ) → 𝐵 = 0 ) | ||
| Assertion | fprodeq0g | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodeq0g.kph | ⊢ Ⅎ 𝑘 𝜑 | |
| 2 | fprodeq0g.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 3 | fprodeq0g.b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 4 | fprodeq0g.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝐴 ) | |
| 5 | fprodeq0g.b0 | ⊢ ( ( 𝜑 ∧ 𝑘 = 𝐶 ) → 𝐵 = 0 ) | |
| 6 | nfcvd | ⊢ ( 𝜑 → Ⅎ 𝑘 0 ) | |
| 7 | 1 6 2 3 4 5 | fprodsplit1f | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 = ( 0 · ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝐶 } ) 𝐵 ) ) |
| 8 | diffi | ⊢ ( 𝐴 ∈ Fin → ( 𝐴 ∖ { 𝐶 } ) ∈ Fin ) | |
| 9 | 2 8 | syl | ⊢ ( 𝜑 → ( 𝐴 ∖ { 𝐶 } ) ∈ Fin ) |
| 10 | eldifi | ⊢ ( 𝑘 ∈ ( 𝐴 ∖ { 𝐶 } ) → 𝑘 ∈ 𝐴 ) | |
| 11 | 10 3 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ { 𝐶 } ) ) → 𝐵 ∈ ℂ ) |
| 12 | 1 9 11 | fprodclf | ⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝐶 } ) 𝐵 ∈ ℂ ) |
| 13 | 12 | mul02d | ⊢ ( 𝜑 → ( 0 · ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝐶 } ) 𝐵 ) = 0 ) |
| 14 | 7 13 | eqtrd | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 = 0 ) |