This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite product of nonzero terms is nonzero. A version of fprodn0 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodn0f.kph | ⊢ Ⅎ 𝑘 𝜑 | |
| fprodn0f.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | ||
| fprodn0f.b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | ||
| fprodn0f.bne0 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ≠ 0 ) | ||
| Assertion | fprodn0f | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodn0f.kph | ⊢ Ⅎ 𝑘 𝜑 | |
| 2 | fprodn0f.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 3 | fprodn0f.b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 4 | fprodn0f.bne0 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ≠ 0 ) | |
| 5 | difssd | ⊢ ( 𝜑 → ( ℂ ∖ { 0 } ) ⊆ ℂ ) | |
| 6 | eldifi | ⊢ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) → 𝑥 ∈ ℂ ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 𝑥 ∈ ℂ ) |
| 8 | eldifi | ⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) → 𝑦 ∈ ℂ ) | |
| 9 | 8 | adantl | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 𝑦 ∈ ℂ ) |
| 10 | 7 9 | mulcld | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑥 · 𝑦 ) ∈ ℂ ) |
| 11 | eldifsni | ⊢ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) → 𝑥 ≠ 0 ) | |
| 12 | 11 | adantr | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 𝑥 ≠ 0 ) |
| 13 | eldifsni | ⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) → 𝑦 ≠ 0 ) | |
| 14 | 13 | adantl | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 𝑦 ≠ 0 ) |
| 15 | 7 9 12 14 | mulne0d | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑥 · 𝑦 ) ≠ 0 ) |
| 16 | 15 | neneqd | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ¬ ( 𝑥 · 𝑦 ) = 0 ) |
| 17 | ovex | ⊢ ( 𝑥 · 𝑦 ) ∈ V | |
| 18 | 17 | elsn | ⊢ ( ( 𝑥 · 𝑦 ) ∈ { 0 } ↔ ( 𝑥 · 𝑦 ) = 0 ) |
| 19 | 16 18 | sylnibr | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ¬ ( 𝑥 · 𝑦 ) ∈ { 0 } ) |
| 20 | 10 19 | eldifd | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑥 · 𝑦 ) ∈ ( ℂ ∖ { 0 } ) ) |
| 21 | 20 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ) → ( 𝑥 · 𝑦 ) ∈ ( ℂ ∖ { 0 } ) ) |
| 22 | 4 | neneqd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ¬ 𝐵 = 0 ) |
| 23 | elsng | ⊢ ( 𝐵 ∈ ℂ → ( 𝐵 ∈ { 0 } ↔ 𝐵 = 0 ) ) | |
| 24 | 3 23 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐵 ∈ { 0 } ↔ 𝐵 = 0 ) ) |
| 25 | 22 24 | mtbird | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ¬ 𝐵 ∈ { 0 } ) |
| 26 | 3 25 | eldifd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ( ℂ ∖ { 0 } ) ) |
| 27 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 28 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 29 | 1ex | ⊢ 1 ∈ V | |
| 30 | 29 | elsn | ⊢ ( 1 ∈ { 0 } ↔ 1 = 0 ) |
| 31 | 28 30 | nemtbir | ⊢ ¬ 1 ∈ { 0 } |
| 32 | eldif | ⊢ ( 1 ∈ ( ℂ ∖ { 0 } ) ↔ ( 1 ∈ ℂ ∧ ¬ 1 ∈ { 0 } ) ) | |
| 33 | 27 31 32 | mpbir2an | ⊢ 1 ∈ ( ℂ ∖ { 0 } ) |
| 34 | 33 | a1i | ⊢ ( 𝜑 → 1 ∈ ( ℂ ∖ { 0 } ) ) |
| 35 | 1 5 21 2 26 34 | fprodcllemf | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 ∈ ( ℂ ∖ { 0 } ) ) |
| 36 | eldifsni | ⊢ ( ∏ 𝑘 ∈ 𝐴 𝐵 ∈ ( ℂ ∖ { 0 } ) → ∏ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) | |
| 37 | 35 36 | syl | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) |