This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ratio of a number over a smaller positive number is larger than 1. (Contributed by Glauco Siliprandi, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divge1 | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 1 ≤ ( 𝐵 / 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpgecl | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ℝ+ ) | |
| 2 | rpcn | ⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ∈ ℂ ) | |
| 3 | rpne0 | ⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ≠ 0 ) | |
| 4 | 2 3 | dividd | ⊢ ( 𝐵 ∈ ℝ+ → ( 𝐵 / 𝐵 ) = 1 ) |
| 5 | 4 | eqcomd | ⊢ ( 𝐵 ∈ ℝ+ → 1 = ( 𝐵 / 𝐵 ) ) |
| 6 | 1 5 | syl | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 1 = ( 𝐵 / 𝐵 ) ) |
| 7 | simp3 | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ≤ 𝐵 ) | |
| 8 | simp1 | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ℝ+ ) | |
| 9 | 8 1 1 | lediv2d | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐵 / 𝐵 ) ≤ ( 𝐵 / 𝐴 ) ) ) |
| 10 | 7 9 | mpbid | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( 𝐵 / 𝐵 ) ≤ ( 𝐵 / 𝐴 ) ) |
| 11 | 6 10 | eqbrtrd | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 1 ≤ ( 𝐵 / 𝐴 ) ) |