This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of a finite product of real numbers. A version of fprodrecl using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodreclf.kph | ⊢ Ⅎ 𝑘 𝜑 | |
| fprodcl.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | ||
| fprodrecl.b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | ||
| Assertion | fprodreclf | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodreclf.kph | ⊢ Ⅎ 𝑘 𝜑 | |
| 2 | fprodcl.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 3 | fprodrecl.b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | |
| 4 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 5 | 4 | a1i | ⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 6 | remulcl | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 · 𝑦 ) ∈ ℝ ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) → ( 𝑥 · 𝑦 ) ∈ ℝ ) |
| 8 | 1red | ⊢ ( 𝜑 → 1 ∈ ℝ ) | |
| 9 | 1 5 7 2 3 8 | fprodcllemf | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 ∈ ℝ ) |