This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The quotient of two finite products. A version of fproddiv using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fproddivf.kph | ⊢ Ⅎ 𝑘 𝜑 | |
| fproddivf.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | ||
| fproddivf.b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | ||
| fproddivf.c | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) | ||
| fproddivf.ne0 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ≠ 0 ) | ||
| Assertion | fproddivf | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 ( 𝐵 / 𝐶 ) = ( ∏ 𝑘 ∈ 𝐴 𝐵 / ∏ 𝑘 ∈ 𝐴 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fproddivf.kph | ⊢ Ⅎ 𝑘 𝜑 | |
| 2 | fproddivf.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 3 | fproddivf.b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 4 | fproddivf.c | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) | |
| 5 | fproddivf.ne0 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ≠ 0 ) | |
| 6 | nfcv | ⊢ Ⅎ 𝑗 ( 𝐵 / 𝐶 ) | |
| 7 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 | |
| 8 | nfcv | ⊢ Ⅎ 𝑘 / | |
| 9 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 | |
| 10 | 7 8 9 | nfov | ⊢ Ⅎ 𝑘 ( ⦋ 𝑗 / 𝑘 ⦌ 𝐵 / ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) |
| 11 | csbeq1a | ⊢ ( 𝑘 = 𝑗 → 𝐵 = ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) | |
| 12 | csbeq1a | ⊢ ( 𝑘 = 𝑗 → 𝐶 = ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) | |
| 13 | 11 12 | oveq12d | ⊢ ( 𝑘 = 𝑗 → ( 𝐵 / 𝐶 ) = ( ⦋ 𝑗 / 𝑘 ⦌ 𝐵 / ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) |
| 14 | 6 10 13 | cbvprodi | ⊢ ∏ 𝑘 ∈ 𝐴 ( 𝐵 / 𝐶 ) = ∏ 𝑗 ∈ 𝐴 ( ⦋ 𝑗 / 𝑘 ⦌ 𝐵 / ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) |
| 15 | 14 | a1i | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 ( 𝐵 / 𝐶 ) = ∏ 𝑗 ∈ 𝐴 ( ⦋ 𝑗 / 𝑘 ⦌ 𝐵 / ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) |
| 16 | nfvd | ⊢ ( 𝜑 → Ⅎ 𝑘 𝑗 ∈ 𝐴 ) | |
| 17 | 1 16 | nfan1 | ⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) |
| 18 | 7 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℂ |
| 19 | 17 18 | nfim | ⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 20 | eleq1w | ⊢ ( 𝑘 = 𝑗 → ( 𝑘 ∈ 𝐴 ↔ 𝑗 ∈ 𝐴 ) ) | |
| 21 | 20 | anbi2d | ⊢ ( 𝑘 = 𝑗 → ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) ) ) |
| 22 | 11 | eleq1d | ⊢ ( 𝑘 = 𝑗 → ( 𝐵 ∈ ℂ ↔ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
| 23 | 21 22 | imbi12d | ⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) ) |
| 24 | 19 23 3 | chvarfv | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 25 | 9 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ℂ |
| 26 | 17 25 | nfim | ⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ℂ ) |
| 27 | 12 | eleq1d | ⊢ ( 𝑘 = 𝑗 → ( 𝐶 ∈ ℂ ↔ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ℂ ) ) |
| 28 | 21 27 | imbi12d | ⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ℂ ) ) ) |
| 29 | 26 28 4 | chvarfv | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ℂ ) |
| 30 | nfcv | ⊢ Ⅎ 𝑘 0 | |
| 31 | 9 30 | nfne | ⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ≠ 0 |
| 32 | 17 31 | nfim | ⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ≠ 0 ) |
| 33 | 12 | neeq1d | ⊢ ( 𝑘 = 𝑗 → ( 𝐶 ≠ 0 ↔ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ≠ 0 ) ) |
| 34 | 21 33 | imbi12d | ⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ≠ 0 ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ≠ 0 ) ) ) |
| 35 | 32 34 5 | chvarfv | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ≠ 0 ) |
| 36 | 2 24 29 35 | fproddiv | ⊢ ( 𝜑 → ∏ 𝑗 ∈ 𝐴 ( ⦋ 𝑗 / 𝑘 ⦌ 𝐵 / ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) = ( ∏ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 / ∏ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) |
| 37 | nfcv | ⊢ Ⅎ 𝑗 𝐵 | |
| 38 | 37 7 11 | cbvprodi | ⊢ ∏ 𝑘 ∈ 𝐴 𝐵 = ∏ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 |
| 39 | 38 | eqcomi | ⊢ ∏ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = ∏ 𝑘 ∈ 𝐴 𝐵 |
| 40 | 39 | a1i | ⊢ ( 𝜑 → ∏ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = ∏ 𝑘 ∈ 𝐴 𝐵 ) |
| 41 | nfcv | ⊢ Ⅎ 𝑗 𝐶 | |
| 42 | 12 | equcoms | ⊢ ( 𝑗 = 𝑘 → 𝐶 = ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) |
| 43 | 42 | eqcomd | ⊢ ( 𝑗 = 𝑘 → ⦋ 𝑗 / 𝑘 ⦌ 𝐶 = 𝐶 ) |
| 44 | 9 41 43 | cbvprodi | ⊢ ∏ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 = ∏ 𝑘 ∈ 𝐴 𝐶 |
| 45 | 44 | a1i | ⊢ ( 𝜑 → ∏ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 = ∏ 𝑘 ∈ 𝐴 𝐶 ) |
| 46 | 40 45 | oveq12d | ⊢ ( 𝜑 → ( ∏ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 / ∏ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) = ( ∏ 𝑘 ∈ 𝐴 𝐵 / ∏ 𝑘 ∈ 𝐴 𝐶 ) ) |
| 47 | 15 36 46 | 3eqtrd | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 ( 𝐵 / 𝐶 ) = ( ∏ 𝑘 ∈ 𝐴 𝐵 / ∏ 𝑘 ∈ 𝐴 𝐶 ) ) |