This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of a finite product of complex numbers. A version of fprodcl using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodclf.kph | ⊢ Ⅎ 𝑘 𝜑 | |
| fprodclf.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | ||
| fprodclf.b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | ||
| Assertion | fprodclf | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodclf.kph | ⊢ Ⅎ 𝑘 𝜑 | |
| 2 | fprodclf.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 3 | fprodclf.b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 4 | ssidd | ⊢ ( 𝜑 → ℂ ⊆ ℂ ) | |
| 5 | mulcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) ∈ ℂ ) | |
| 6 | 5 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( 𝑥 · 𝑦 ) ∈ ℂ ) |
| 7 | 1cnd | ⊢ ( 𝜑 → 1 ∈ ℂ ) | |
| 8 | 1 4 6 2 3 7 | fprodcllemf | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ ) |