This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If all the terms of a finite product are nonnegative, so is the product. (Contributed by Glauco Siliprandi, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodge0.kph | ⊢ Ⅎ 𝑘 𝜑 | |
| fprodge0.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | ||
| fprodge0.b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | ||
| fprodge0.0leb | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 0 ≤ 𝐵 ) | ||
| Assertion | fprodge0 | ⊢ ( 𝜑 → 0 ≤ ∏ 𝑘 ∈ 𝐴 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodge0.kph | ⊢ Ⅎ 𝑘 𝜑 | |
| 2 | fprodge0.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 3 | fprodge0.b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | |
| 4 | fprodge0.0leb | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 0 ≤ 𝐵 ) | |
| 5 | 0xr | ⊢ 0 ∈ ℝ* | |
| 6 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 7 | rge0ssre | ⊢ ( 0 [,) +∞ ) ⊆ ℝ | |
| 8 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 9 | 7 8 | sstri | ⊢ ( 0 [,) +∞ ) ⊆ ℂ |
| 10 | 9 | a1i | ⊢ ( 𝜑 → ( 0 [,) +∞ ) ⊆ ℂ ) |
| 11 | ge0mulcl | ⊢ ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( 𝑥 · 𝑦 ) ∈ ( 0 [,) +∞ ) ) | |
| 12 | 11 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ) → ( 𝑥 · 𝑦 ) ∈ ( 0 [,) +∞ ) ) |
| 13 | elrege0 | ⊢ ( 𝐵 ∈ ( 0 [,) +∞ ) ↔ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) | |
| 14 | 3 4 13 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,) +∞ ) ) |
| 15 | 1re | ⊢ 1 ∈ ℝ | |
| 16 | 0le1 | ⊢ 0 ≤ 1 | |
| 17 | ltpnf | ⊢ ( 1 ∈ ℝ → 1 < +∞ ) | |
| 18 | 15 17 | ax-mp | ⊢ 1 < +∞ |
| 19 | 0re | ⊢ 0 ∈ ℝ | |
| 20 | elico2 | ⊢ ( ( 0 ∈ ℝ ∧ +∞ ∈ ℝ* ) → ( 1 ∈ ( 0 [,) +∞ ) ↔ ( 1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞ ) ) ) | |
| 21 | 19 6 20 | mp2an | ⊢ ( 1 ∈ ( 0 [,) +∞ ) ↔ ( 1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞ ) ) |
| 22 | 15 16 18 21 | mpbir3an | ⊢ 1 ∈ ( 0 [,) +∞ ) |
| 23 | 22 | a1i | ⊢ ( 𝜑 → 1 ∈ ( 0 [,) +∞ ) ) |
| 24 | 1 10 12 2 14 23 | fprodcllemf | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 ∈ ( 0 [,) +∞ ) ) |
| 25 | icogelb | ⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ∏ 𝑘 ∈ 𝐴 𝐵 ∈ ( 0 [,) +∞ ) ) → 0 ≤ ∏ 𝑘 ∈ 𝐴 𝐵 ) | |
| 26 | 5 6 24 25 | mp3an12i | ⊢ ( 𝜑 → 0 ≤ ∏ 𝑘 ∈ 𝐴 𝐵 ) |