This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If all factors of two finite products are equal modulo M , the products are equal modulo M . (Contributed by AV, 7-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodmodd.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| fprodmodd.b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℤ ) | ||
| fprodmodd.c | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℤ ) | ||
| fprodmodd.m | ⊢ ( 𝜑 → 𝑀 ∈ ℕ ) | ||
| fprodmodd.p | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐵 mod 𝑀 ) = ( 𝐶 mod 𝑀 ) ) | ||
| Assertion | fprodmodd | ⊢ ( 𝜑 → ( ∏ 𝑘 ∈ 𝐴 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝐴 𝐶 mod 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodmodd.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 2 | fprodmodd.b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℤ ) | |
| 3 | fprodmodd.c | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℤ ) | |
| 4 | fprodmodd.m | ⊢ ( 𝜑 → 𝑀 ∈ ℕ ) | |
| 5 | fprodmodd.p | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐵 mod 𝑀 ) = ( 𝐶 mod 𝑀 ) ) | |
| 6 | prodeq1 | ⊢ ( 𝑥 = ∅ → ∏ 𝑘 ∈ 𝑥 𝐵 = ∏ 𝑘 ∈ ∅ 𝐵 ) | |
| 7 | 6 | oveq1d | ⊢ ( 𝑥 = ∅ → ( ∏ 𝑘 ∈ 𝑥 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ ∅ 𝐵 mod 𝑀 ) ) |
| 8 | prodeq1 | ⊢ ( 𝑥 = ∅ → ∏ 𝑘 ∈ 𝑥 𝐶 = ∏ 𝑘 ∈ ∅ 𝐶 ) | |
| 9 | 8 | oveq1d | ⊢ ( 𝑥 = ∅ → ( ∏ 𝑘 ∈ 𝑥 𝐶 mod 𝑀 ) = ( ∏ 𝑘 ∈ ∅ 𝐶 mod 𝑀 ) ) |
| 10 | 7 9 | eqeq12d | ⊢ ( 𝑥 = ∅ → ( ( ∏ 𝑘 ∈ 𝑥 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑥 𝐶 mod 𝑀 ) ↔ ( ∏ 𝑘 ∈ ∅ 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ ∅ 𝐶 mod 𝑀 ) ) ) |
| 11 | prodeq1 | ⊢ ( 𝑥 = 𝑦 → ∏ 𝑘 ∈ 𝑥 𝐵 = ∏ 𝑘 ∈ 𝑦 𝐵 ) | |
| 12 | 11 | oveq1d | ⊢ ( 𝑥 = 𝑦 → ( ∏ 𝑘 ∈ 𝑥 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑦 𝐵 mod 𝑀 ) ) |
| 13 | prodeq1 | ⊢ ( 𝑥 = 𝑦 → ∏ 𝑘 ∈ 𝑥 𝐶 = ∏ 𝑘 ∈ 𝑦 𝐶 ) | |
| 14 | 13 | oveq1d | ⊢ ( 𝑥 = 𝑦 → ( ∏ 𝑘 ∈ 𝑥 𝐶 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑦 𝐶 mod 𝑀 ) ) |
| 15 | 12 14 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( ( ∏ 𝑘 ∈ 𝑥 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑥 𝐶 mod 𝑀 ) ↔ ( ∏ 𝑘 ∈ 𝑦 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑦 𝐶 mod 𝑀 ) ) ) |
| 16 | prodeq1 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑖 } ) → ∏ 𝑘 ∈ 𝑥 𝐵 = ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑖 } ) 𝐵 ) | |
| 17 | 16 | oveq1d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑖 } ) → ( ∏ 𝑘 ∈ 𝑥 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑖 } ) 𝐵 mod 𝑀 ) ) |
| 18 | prodeq1 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑖 } ) → ∏ 𝑘 ∈ 𝑥 𝐶 = ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑖 } ) 𝐶 ) | |
| 19 | 18 | oveq1d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑖 } ) → ( ∏ 𝑘 ∈ 𝑥 𝐶 mod 𝑀 ) = ( ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑖 } ) 𝐶 mod 𝑀 ) ) |
| 20 | 17 19 | eqeq12d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑖 } ) → ( ( ∏ 𝑘 ∈ 𝑥 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑥 𝐶 mod 𝑀 ) ↔ ( ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑖 } ) 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑖 } ) 𝐶 mod 𝑀 ) ) ) |
| 21 | prodeq1 | ⊢ ( 𝑥 = 𝐴 → ∏ 𝑘 ∈ 𝑥 𝐵 = ∏ 𝑘 ∈ 𝐴 𝐵 ) | |
| 22 | 21 | oveq1d | ⊢ ( 𝑥 = 𝐴 → ( ∏ 𝑘 ∈ 𝑥 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝐴 𝐵 mod 𝑀 ) ) |
| 23 | prodeq1 | ⊢ ( 𝑥 = 𝐴 → ∏ 𝑘 ∈ 𝑥 𝐶 = ∏ 𝑘 ∈ 𝐴 𝐶 ) | |
| 24 | 23 | oveq1d | ⊢ ( 𝑥 = 𝐴 → ( ∏ 𝑘 ∈ 𝑥 𝐶 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝐴 𝐶 mod 𝑀 ) ) |
| 25 | 22 24 | eqeq12d | ⊢ ( 𝑥 = 𝐴 → ( ( ∏ 𝑘 ∈ 𝑥 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑥 𝐶 mod 𝑀 ) ↔ ( ∏ 𝑘 ∈ 𝐴 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝐴 𝐶 mod 𝑀 ) ) ) |
| 26 | prod0 | ⊢ ∏ 𝑘 ∈ ∅ 𝐵 = 1 | |
| 27 | 26 | a1i | ⊢ ( 𝜑 → ∏ 𝑘 ∈ ∅ 𝐵 = 1 ) |
| 28 | 27 | oveq1d | ⊢ ( 𝜑 → ( ∏ 𝑘 ∈ ∅ 𝐵 mod 𝑀 ) = ( 1 mod 𝑀 ) ) |
| 29 | prod0 | ⊢ ∏ 𝑘 ∈ ∅ 𝐶 = 1 | |
| 30 | 29 | eqcomi | ⊢ 1 = ∏ 𝑘 ∈ ∅ 𝐶 |
| 31 | 30 | oveq1i | ⊢ ( 1 mod 𝑀 ) = ( ∏ 𝑘 ∈ ∅ 𝐶 mod 𝑀 ) |
| 32 | 28 31 | eqtrdi | ⊢ ( 𝜑 → ( ∏ 𝑘 ∈ ∅ 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ ∅ 𝐶 mod 𝑀 ) ) |
| 33 | nfv | ⊢ Ⅎ 𝑘 ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) | |
| 34 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑖 / 𝑘 ⦌ 𝐵 | |
| 35 | ssfi | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝑦 ⊆ 𝐴 ) → 𝑦 ∈ Fin ) | |
| 36 | 35 | ex | ⊢ ( 𝐴 ∈ Fin → ( 𝑦 ⊆ 𝐴 → 𝑦 ∈ Fin ) ) |
| 37 | 36 1 | syl11 | ⊢ ( 𝑦 ⊆ 𝐴 → ( 𝜑 → 𝑦 ∈ Fin ) ) |
| 38 | 37 | adantr | ⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) → ( 𝜑 → 𝑦 ∈ Fin ) ) |
| 39 | 38 | impcom | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → 𝑦 ∈ Fin ) |
| 40 | simpr | ⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) → 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) | |
| 41 | 40 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) |
| 42 | eldifn | ⊢ ( 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) → ¬ 𝑖 ∈ 𝑦 ) | |
| 43 | 42 | adantl | ⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) → ¬ 𝑖 ∈ 𝑦 ) |
| 44 | 43 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ¬ 𝑖 ∈ 𝑦 ) |
| 45 | simpll | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ 𝑦 ) → 𝜑 ) | |
| 46 | ssel | ⊢ ( 𝑦 ⊆ 𝐴 → ( 𝑘 ∈ 𝑦 → 𝑘 ∈ 𝐴 ) ) | |
| 47 | 46 | adantr | ⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) → ( 𝑘 ∈ 𝑦 → 𝑘 ∈ 𝐴 ) ) |
| 48 | 47 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( 𝑘 ∈ 𝑦 → 𝑘 ∈ 𝐴 ) ) |
| 49 | 48 | imp | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ 𝑦 ) → 𝑘 ∈ 𝐴 ) |
| 50 | 45 49 2 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ 𝑦 ) → 𝐵 ∈ ℤ ) |
| 51 | 50 | zcnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ 𝑦 ) → 𝐵 ∈ ℂ ) |
| 52 | csbeq1a | ⊢ ( 𝑘 = 𝑖 → 𝐵 = ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ) | |
| 53 | eldifi | ⊢ ( 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) → 𝑖 ∈ 𝐴 ) | |
| 54 | 53 | adantl | ⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) → 𝑖 ∈ 𝐴 ) |
| 55 | 2 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℤ ) |
| 56 | rspcsbela | ⊢ ( ( 𝑖 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℤ ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ∈ ℤ ) | |
| 57 | 54 55 56 | syl2anr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ∈ ℤ ) |
| 58 | 57 | zcnd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 59 | 33 34 39 41 44 51 52 58 | fprodsplitsn | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑖 } ) 𝐵 = ( ∏ 𝑘 ∈ 𝑦 𝐵 · ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ) ) |
| 60 | 59 | oveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑖 } ) 𝐵 mod 𝑀 ) = ( ( ∏ 𝑘 ∈ 𝑦 𝐵 · ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ) mod 𝑀 ) ) |
| 61 | 60 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ( ∏ 𝑘 ∈ 𝑦 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑦 𝐶 mod 𝑀 ) ) → ( ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑖 } ) 𝐵 mod 𝑀 ) = ( ( ∏ 𝑘 ∈ 𝑦 𝐵 · ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ) mod 𝑀 ) ) |
| 62 | 39 50 | fprodzcl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ∏ 𝑘 ∈ 𝑦 𝐵 ∈ ℤ ) |
| 63 | 62 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ( ∏ 𝑘 ∈ 𝑦 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑦 𝐶 mod 𝑀 ) ) → ∏ 𝑘 ∈ 𝑦 𝐵 ∈ ℤ ) |
| 64 | 45 49 3 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ 𝑦 ) → 𝐶 ∈ ℤ ) |
| 65 | 39 64 | fprodzcl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ∏ 𝑘 ∈ 𝑦 𝐶 ∈ ℤ ) |
| 66 | 65 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ( ∏ 𝑘 ∈ 𝑦 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑦 𝐶 mod 𝑀 ) ) → ∏ 𝑘 ∈ 𝑦 𝐶 ∈ ℤ ) |
| 67 | 57 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ( ∏ 𝑘 ∈ 𝑦 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑦 𝐶 mod 𝑀 ) ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ∈ ℤ ) |
| 68 | 3 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐶 ∈ ℤ ) |
| 69 | rspcsbela | ⊢ ( ( 𝑖 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ∈ ℤ ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐶 ∈ ℤ ) | |
| 70 | 54 68 69 | syl2anr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐶 ∈ ℤ ) |
| 71 | 70 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ( ∏ 𝑘 ∈ 𝑦 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑦 𝐶 mod 𝑀 ) ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐶 ∈ ℤ ) |
| 72 | 4 | nnrpd | ⊢ ( 𝜑 → 𝑀 ∈ ℝ+ ) |
| 73 | 72 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → 𝑀 ∈ ℝ+ ) |
| 74 | 73 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ( ∏ 𝑘 ∈ 𝑦 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑦 𝐶 mod 𝑀 ) ) → 𝑀 ∈ ℝ+ ) |
| 75 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ( ∏ 𝑘 ∈ 𝑦 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑦 𝐶 mod 𝑀 ) ) → ( ∏ 𝑘 ∈ 𝑦 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑦 𝐶 mod 𝑀 ) ) | |
| 76 | 5 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 ( 𝐵 mod 𝑀 ) = ( 𝐶 mod 𝑀 ) ) |
| 77 | rspsbca | ⊢ ( ( 𝑖 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝐵 mod 𝑀 ) = ( 𝐶 mod 𝑀 ) ) → [ 𝑖 / 𝑘 ] ( 𝐵 mod 𝑀 ) = ( 𝐶 mod 𝑀 ) ) | |
| 78 | 54 76 77 | syl2anr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → [ 𝑖 / 𝑘 ] ( 𝐵 mod 𝑀 ) = ( 𝐶 mod 𝑀 ) ) |
| 79 | vex | ⊢ 𝑖 ∈ V | |
| 80 | sbceqg | ⊢ ( 𝑖 ∈ V → ( [ 𝑖 / 𝑘 ] ( 𝐵 mod 𝑀 ) = ( 𝐶 mod 𝑀 ) ↔ ⦋ 𝑖 / 𝑘 ⦌ ( 𝐵 mod 𝑀 ) = ⦋ 𝑖 / 𝑘 ⦌ ( 𝐶 mod 𝑀 ) ) ) | |
| 81 | 79 80 | mp1i | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( [ 𝑖 / 𝑘 ] ( 𝐵 mod 𝑀 ) = ( 𝐶 mod 𝑀 ) ↔ ⦋ 𝑖 / 𝑘 ⦌ ( 𝐵 mod 𝑀 ) = ⦋ 𝑖 / 𝑘 ⦌ ( 𝐶 mod 𝑀 ) ) ) |
| 82 | 78 81 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ⦋ 𝑖 / 𝑘 ⦌ ( 𝐵 mod 𝑀 ) = ⦋ 𝑖 / 𝑘 ⦌ ( 𝐶 mod 𝑀 ) ) |
| 83 | csbov1g | ⊢ ( 𝑖 ∈ V → ⦋ 𝑖 / 𝑘 ⦌ ( 𝐵 mod 𝑀 ) = ( ⦋ 𝑖 / 𝑘 ⦌ 𝐵 mod 𝑀 ) ) | |
| 84 | 83 | elv | ⊢ ⦋ 𝑖 / 𝑘 ⦌ ( 𝐵 mod 𝑀 ) = ( ⦋ 𝑖 / 𝑘 ⦌ 𝐵 mod 𝑀 ) |
| 85 | csbov1g | ⊢ ( 𝑖 ∈ V → ⦋ 𝑖 / 𝑘 ⦌ ( 𝐶 mod 𝑀 ) = ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 mod 𝑀 ) ) | |
| 86 | 85 | elv | ⊢ ⦋ 𝑖 / 𝑘 ⦌ ( 𝐶 mod 𝑀 ) = ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 mod 𝑀 ) |
| 87 | 82 84 86 | 3eqtr3g | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ⦋ 𝑖 / 𝑘 ⦌ 𝐵 mod 𝑀 ) = ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 mod 𝑀 ) ) |
| 88 | 87 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ( ∏ 𝑘 ∈ 𝑦 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑦 𝐶 mod 𝑀 ) ) → ( ⦋ 𝑖 / 𝑘 ⦌ 𝐵 mod 𝑀 ) = ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 mod 𝑀 ) ) |
| 89 | 63 66 67 71 74 75 88 | modmul12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ( ∏ 𝑘 ∈ 𝑦 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑦 𝐶 mod 𝑀 ) ) → ( ( ∏ 𝑘 ∈ 𝑦 𝐵 · ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ) mod 𝑀 ) = ( ( ∏ 𝑘 ∈ 𝑦 𝐶 · ⦋ 𝑖 / 𝑘 ⦌ 𝐶 ) mod 𝑀 ) ) |
| 90 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑖 / 𝑘 ⦌ 𝐶 | |
| 91 | 64 | zcnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ 𝑦 ) → 𝐶 ∈ ℂ ) |
| 92 | csbeq1a | ⊢ ( 𝑘 = 𝑖 → 𝐶 = ⦋ 𝑖 / 𝑘 ⦌ 𝐶 ) | |
| 93 | 70 | zcnd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐶 ∈ ℂ ) |
| 94 | 33 90 39 41 44 91 92 93 | fprodsplitsn | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑖 } ) 𝐶 = ( ∏ 𝑘 ∈ 𝑦 𝐶 · ⦋ 𝑖 / 𝑘 ⦌ 𝐶 ) ) |
| 95 | 94 | oveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑖 } ) 𝐶 mod 𝑀 ) = ( ( ∏ 𝑘 ∈ 𝑦 𝐶 · ⦋ 𝑖 / 𝑘 ⦌ 𝐶 ) mod 𝑀 ) ) |
| 96 | 95 | eqcomd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ( ∏ 𝑘 ∈ 𝑦 𝐶 · ⦋ 𝑖 / 𝑘 ⦌ 𝐶 ) mod 𝑀 ) = ( ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑖 } ) 𝐶 mod 𝑀 ) ) |
| 97 | 96 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ( ∏ 𝑘 ∈ 𝑦 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑦 𝐶 mod 𝑀 ) ) → ( ( ∏ 𝑘 ∈ 𝑦 𝐶 · ⦋ 𝑖 / 𝑘 ⦌ 𝐶 ) mod 𝑀 ) = ( ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑖 } ) 𝐶 mod 𝑀 ) ) |
| 98 | 61 89 97 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ( ∏ 𝑘 ∈ 𝑦 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑦 𝐶 mod 𝑀 ) ) → ( ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑖 } ) 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑖 } ) 𝐶 mod 𝑀 ) ) |
| 99 | 98 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ( ∏ 𝑘 ∈ 𝑦 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑦 𝐶 mod 𝑀 ) → ( ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑖 } ) 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑖 } ) 𝐶 mod 𝑀 ) ) ) |
| 100 | 10 15 20 25 32 99 1 | findcard2d | ⊢ ( 𝜑 → ( ∏ 𝑘 ∈ 𝐴 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝐴 𝐶 mod 𝑀 ) ) |