This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin1a2 . Establish that _om can be broken into two equipollent pieces. (Contributed by Stefan O'Rear, 7-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fin1a2lem.b | ⊢ 𝐸 = ( 𝑥 ∈ ω ↦ ( 2o ·o 𝑥 ) ) | |
| fin1a2lem.aa | ⊢ 𝑆 = ( 𝑥 ∈ On ↦ suc 𝑥 ) | ||
| Assertion | fin1a2lem6 | ⊢ ( 𝑆 ↾ ran 𝐸 ) : ran 𝐸 –1-1-onto→ ( ω ∖ ran 𝐸 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin1a2lem.b | ⊢ 𝐸 = ( 𝑥 ∈ ω ↦ ( 2o ·o 𝑥 ) ) | |
| 2 | fin1a2lem.aa | ⊢ 𝑆 = ( 𝑥 ∈ On ↦ suc 𝑥 ) | |
| 3 | 2 | fin1a2lem2 | ⊢ 𝑆 : On –1-1→ On |
| 4 | 1 | fin1a2lem4 | ⊢ 𝐸 : ω –1-1→ ω |
| 5 | f1f | ⊢ ( 𝐸 : ω –1-1→ ω → 𝐸 : ω ⟶ ω ) | |
| 6 | frn | ⊢ ( 𝐸 : ω ⟶ ω → ran 𝐸 ⊆ ω ) | |
| 7 | omsson | ⊢ ω ⊆ On | |
| 8 | 6 7 | sstrdi | ⊢ ( 𝐸 : ω ⟶ ω → ran 𝐸 ⊆ On ) |
| 9 | 4 5 8 | mp2b | ⊢ ran 𝐸 ⊆ On |
| 10 | f1ores | ⊢ ( ( 𝑆 : On –1-1→ On ∧ ran 𝐸 ⊆ On ) → ( 𝑆 ↾ ran 𝐸 ) : ran 𝐸 –1-1-onto→ ( 𝑆 “ ran 𝐸 ) ) | |
| 11 | 3 9 10 | mp2an | ⊢ ( 𝑆 ↾ ran 𝐸 ) : ran 𝐸 –1-1-onto→ ( 𝑆 “ ran 𝐸 ) |
| 12 | 9 | sseli | ⊢ ( 𝑏 ∈ ran 𝐸 → 𝑏 ∈ On ) |
| 13 | 2 | fin1a2lem1 | ⊢ ( 𝑏 ∈ On → ( 𝑆 ‘ 𝑏 ) = suc 𝑏 ) |
| 14 | 12 13 | syl | ⊢ ( 𝑏 ∈ ran 𝐸 → ( 𝑆 ‘ 𝑏 ) = suc 𝑏 ) |
| 15 | 14 | eqeq1d | ⊢ ( 𝑏 ∈ ran 𝐸 → ( ( 𝑆 ‘ 𝑏 ) = 𝑎 ↔ suc 𝑏 = 𝑎 ) ) |
| 16 | 15 | rexbiia | ⊢ ( ∃ 𝑏 ∈ ran 𝐸 ( 𝑆 ‘ 𝑏 ) = 𝑎 ↔ ∃ 𝑏 ∈ ran 𝐸 suc 𝑏 = 𝑎 ) |
| 17 | 4 5 6 | mp2b | ⊢ ran 𝐸 ⊆ ω |
| 18 | 17 | sseli | ⊢ ( 𝑏 ∈ ran 𝐸 → 𝑏 ∈ ω ) |
| 19 | peano2 | ⊢ ( 𝑏 ∈ ω → suc 𝑏 ∈ ω ) | |
| 20 | 18 19 | syl | ⊢ ( 𝑏 ∈ ran 𝐸 → suc 𝑏 ∈ ω ) |
| 21 | 1 | fin1a2lem5 | ⊢ ( 𝑏 ∈ ω → ( 𝑏 ∈ ran 𝐸 ↔ ¬ suc 𝑏 ∈ ran 𝐸 ) ) |
| 22 | 21 | biimpd | ⊢ ( 𝑏 ∈ ω → ( 𝑏 ∈ ran 𝐸 → ¬ suc 𝑏 ∈ ran 𝐸 ) ) |
| 23 | 18 22 | mpcom | ⊢ ( 𝑏 ∈ ran 𝐸 → ¬ suc 𝑏 ∈ ran 𝐸 ) |
| 24 | 20 23 | jca | ⊢ ( 𝑏 ∈ ran 𝐸 → ( suc 𝑏 ∈ ω ∧ ¬ suc 𝑏 ∈ ran 𝐸 ) ) |
| 25 | eleq1 | ⊢ ( suc 𝑏 = 𝑎 → ( suc 𝑏 ∈ ω ↔ 𝑎 ∈ ω ) ) | |
| 26 | eleq1 | ⊢ ( suc 𝑏 = 𝑎 → ( suc 𝑏 ∈ ran 𝐸 ↔ 𝑎 ∈ ran 𝐸 ) ) | |
| 27 | 26 | notbid | ⊢ ( suc 𝑏 = 𝑎 → ( ¬ suc 𝑏 ∈ ran 𝐸 ↔ ¬ 𝑎 ∈ ran 𝐸 ) ) |
| 28 | 25 27 | anbi12d | ⊢ ( suc 𝑏 = 𝑎 → ( ( suc 𝑏 ∈ ω ∧ ¬ suc 𝑏 ∈ ran 𝐸 ) ↔ ( 𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸 ) ) ) |
| 29 | 24 28 | syl5ibcom | ⊢ ( 𝑏 ∈ ran 𝐸 → ( suc 𝑏 = 𝑎 → ( 𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸 ) ) ) |
| 30 | 29 | rexlimiv | ⊢ ( ∃ 𝑏 ∈ ran 𝐸 suc 𝑏 = 𝑎 → ( 𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸 ) ) |
| 31 | peano1 | ⊢ ∅ ∈ ω | |
| 32 | 1 | fin1a2lem3 | ⊢ ( ∅ ∈ ω → ( 𝐸 ‘ ∅ ) = ( 2o ·o ∅ ) ) |
| 33 | 31 32 | ax-mp | ⊢ ( 𝐸 ‘ ∅ ) = ( 2o ·o ∅ ) |
| 34 | 2on | ⊢ 2o ∈ On | |
| 35 | om0 | ⊢ ( 2o ∈ On → ( 2o ·o ∅ ) = ∅ ) | |
| 36 | 34 35 | ax-mp | ⊢ ( 2o ·o ∅ ) = ∅ |
| 37 | 33 36 | eqtri | ⊢ ( 𝐸 ‘ ∅ ) = ∅ |
| 38 | f1fun | ⊢ ( 𝐸 : ω –1-1→ ω → Fun 𝐸 ) | |
| 39 | 4 38 | ax-mp | ⊢ Fun 𝐸 |
| 40 | f1dm | ⊢ ( 𝐸 : ω –1-1→ ω → dom 𝐸 = ω ) | |
| 41 | 4 40 | ax-mp | ⊢ dom 𝐸 = ω |
| 42 | 31 41 | eleqtrri | ⊢ ∅ ∈ dom 𝐸 |
| 43 | fvelrn | ⊢ ( ( Fun 𝐸 ∧ ∅ ∈ dom 𝐸 ) → ( 𝐸 ‘ ∅ ) ∈ ran 𝐸 ) | |
| 44 | 39 42 43 | mp2an | ⊢ ( 𝐸 ‘ ∅ ) ∈ ran 𝐸 |
| 45 | 37 44 | eqeltrri | ⊢ ∅ ∈ ran 𝐸 |
| 46 | eleq1 | ⊢ ( 𝑎 = ∅ → ( 𝑎 ∈ ran 𝐸 ↔ ∅ ∈ ran 𝐸 ) ) | |
| 47 | 45 46 | mpbiri | ⊢ ( 𝑎 = ∅ → 𝑎 ∈ ran 𝐸 ) |
| 48 | 47 | necon3bi | ⊢ ( ¬ 𝑎 ∈ ran 𝐸 → 𝑎 ≠ ∅ ) |
| 49 | nnsuc | ⊢ ( ( 𝑎 ∈ ω ∧ 𝑎 ≠ ∅ ) → ∃ 𝑏 ∈ ω 𝑎 = suc 𝑏 ) | |
| 50 | 48 49 | sylan2 | ⊢ ( ( 𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸 ) → ∃ 𝑏 ∈ ω 𝑎 = suc 𝑏 ) |
| 51 | eleq1 | ⊢ ( 𝑎 = suc 𝑏 → ( 𝑎 ∈ ω ↔ suc 𝑏 ∈ ω ) ) | |
| 52 | eleq1 | ⊢ ( 𝑎 = suc 𝑏 → ( 𝑎 ∈ ran 𝐸 ↔ suc 𝑏 ∈ ran 𝐸 ) ) | |
| 53 | 52 | notbid | ⊢ ( 𝑎 = suc 𝑏 → ( ¬ 𝑎 ∈ ran 𝐸 ↔ ¬ suc 𝑏 ∈ ran 𝐸 ) ) |
| 54 | 51 53 | anbi12d | ⊢ ( 𝑎 = suc 𝑏 → ( ( 𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸 ) ↔ ( suc 𝑏 ∈ ω ∧ ¬ suc 𝑏 ∈ ran 𝐸 ) ) ) |
| 55 | 54 | anbi1d | ⊢ ( 𝑎 = suc 𝑏 → ( ( ( 𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸 ) ∧ 𝑏 ∈ ω ) ↔ ( ( suc 𝑏 ∈ ω ∧ ¬ suc 𝑏 ∈ ran 𝐸 ) ∧ 𝑏 ∈ ω ) ) ) |
| 56 | simplr | ⊢ ( ( ( suc 𝑏 ∈ ω ∧ ¬ suc 𝑏 ∈ ran 𝐸 ) ∧ 𝑏 ∈ ω ) → ¬ suc 𝑏 ∈ ran 𝐸 ) | |
| 57 | 21 | adantl | ⊢ ( ( ( suc 𝑏 ∈ ω ∧ ¬ suc 𝑏 ∈ ran 𝐸 ) ∧ 𝑏 ∈ ω ) → ( 𝑏 ∈ ran 𝐸 ↔ ¬ suc 𝑏 ∈ ran 𝐸 ) ) |
| 58 | 56 57 | mpbird | ⊢ ( ( ( suc 𝑏 ∈ ω ∧ ¬ suc 𝑏 ∈ ran 𝐸 ) ∧ 𝑏 ∈ ω ) → 𝑏 ∈ ran 𝐸 ) |
| 59 | 55 58 | biimtrdi | ⊢ ( 𝑎 = suc 𝑏 → ( ( ( 𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸 ) ∧ 𝑏 ∈ ω ) → 𝑏 ∈ ran 𝐸 ) ) |
| 60 | 59 | com12 | ⊢ ( ( ( 𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸 ) ∧ 𝑏 ∈ ω ) → ( 𝑎 = suc 𝑏 → 𝑏 ∈ ran 𝐸 ) ) |
| 61 | 60 | impr | ⊢ ( ( ( 𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸 ) ∧ ( 𝑏 ∈ ω ∧ 𝑎 = suc 𝑏 ) ) → 𝑏 ∈ ran 𝐸 ) |
| 62 | simprr | ⊢ ( ( ( 𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸 ) ∧ ( 𝑏 ∈ ω ∧ 𝑎 = suc 𝑏 ) ) → 𝑎 = suc 𝑏 ) | |
| 63 | 62 | eqcomd | ⊢ ( ( ( 𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸 ) ∧ ( 𝑏 ∈ ω ∧ 𝑎 = suc 𝑏 ) ) → suc 𝑏 = 𝑎 ) |
| 64 | 50 61 63 | reximssdv | ⊢ ( ( 𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸 ) → ∃ 𝑏 ∈ ran 𝐸 suc 𝑏 = 𝑎 ) |
| 65 | 30 64 | impbii | ⊢ ( ∃ 𝑏 ∈ ran 𝐸 suc 𝑏 = 𝑎 ↔ ( 𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸 ) ) |
| 66 | 16 65 | bitri | ⊢ ( ∃ 𝑏 ∈ ran 𝐸 ( 𝑆 ‘ 𝑏 ) = 𝑎 ↔ ( 𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸 ) ) |
| 67 | f1fn | ⊢ ( 𝑆 : On –1-1→ On → 𝑆 Fn On ) | |
| 68 | 3 67 | ax-mp | ⊢ 𝑆 Fn On |
| 69 | fvelimab | ⊢ ( ( 𝑆 Fn On ∧ ran 𝐸 ⊆ On ) → ( 𝑎 ∈ ( 𝑆 “ ran 𝐸 ) ↔ ∃ 𝑏 ∈ ran 𝐸 ( 𝑆 ‘ 𝑏 ) = 𝑎 ) ) | |
| 70 | 68 9 69 | mp2an | ⊢ ( 𝑎 ∈ ( 𝑆 “ ran 𝐸 ) ↔ ∃ 𝑏 ∈ ran 𝐸 ( 𝑆 ‘ 𝑏 ) = 𝑎 ) |
| 71 | eldif | ⊢ ( 𝑎 ∈ ( ω ∖ ran 𝐸 ) ↔ ( 𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸 ) ) | |
| 72 | 66 70 71 | 3bitr4i | ⊢ ( 𝑎 ∈ ( 𝑆 “ ran 𝐸 ) ↔ 𝑎 ∈ ( ω ∖ ran 𝐸 ) ) |
| 73 | 72 | eqriv | ⊢ ( 𝑆 “ ran 𝐸 ) = ( ω ∖ ran 𝐸 ) |
| 74 | f1oeq3 | ⊢ ( ( 𝑆 “ ran 𝐸 ) = ( ω ∖ ran 𝐸 ) → ( ( 𝑆 ↾ ran 𝐸 ) : ran 𝐸 –1-1-onto→ ( 𝑆 “ ran 𝐸 ) ↔ ( 𝑆 ↾ ran 𝐸 ) : ran 𝐸 –1-1-onto→ ( ω ∖ ran 𝐸 ) ) ) | |
| 75 | 73 74 | ax-mp | ⊢ ( ( 𝑆 ↾ ran 𝐸 ) : ran 𝐸 –1-1-onto→ ( 𝑆 “ ran 𝐸 ) ↔ ( 𝑆 ↾ ran 𝐸 ) : ran 𝐸 –1-1-onto→ ( ω ∖ ran 𝐸 ) ) |
| 76 | 11 75 | mpbi | ⊢ ( 𝑆 ↾ ran 𝐸 ) : ran 𝐸 –1-1-onto→ ( ω ∖ ran 𝐸 ) |