This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin1a2 . Establish that _om can be broken into two equipollent pieces. (Contributed by Stefan O'Rear, 7-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fin1a2lem.b | |- E = ( x e. _om |-> ( 2o .o x ) ) |
|
| fin1a2lem.aa | |- S = ( x e. On |-> suc x ) |
||
| Assertion | fin1a2lem6 | |- ( S |` ran E ) : ran E -1-1-onto-> ( _om \ ran E ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin1a2lem.b | |- E = ( x e. _om |-> ( 2o .o x ) ) |
|
| 2 | fin1a2lem.aa | |- S = ( x e. On |-> suc x ) |
|
| 3 | 2 | fin1a2lem2 | |- S : On -1-1-> On |
| 4 | 1 | fin1a2lem4 | |- E : _om -1-1-> _om |
| 5 | f1f | |- ( E : _om -1-1-> _om -> E : _om --> _om ) |
|
| 6 | frn | |- ( E : _om --> _om -> ran E C_ _om ) |
|
| 7 | omsson | |- _om C_ On |
|
| 8 | 6 7 | sstrdi | |- ( E : _om --> _om -> ran E C_ On ) |
| 9 | 4 5 8 | mp2b | |- ran E C_ On |
| 10 | f1ores | |- ( ( S : On -1-1-> On /\ ran E C_ On ) -> ( S |` ran E ) : ran E -1-1-onto-> ( S " ran E ) ) |
|
| 11 | 3 9 10 | mp2an | |- ( S |` ran E ) : ran E -1-1-onto-> ( S " ran E ) |
| 12 | 9 | sseli | |- ( b e. ran E -> b e. On ) |
| 13 | 2 | fin1a2lem1 | |- ( b e. On -> ( S ` b ) = suc b ) |
| 14 | 12 13 | syl | |- ( b e. ran E -> ( S ` b ) = suc b ) |
| 15 | 14 | eqeq1d | |- ( b e. ran E -> ( ( S ` b ) = a <-> suc b = a ) ) |
| 16 | 15 | rexbiia | |- ( E. b e. ran E ( S ` b ) = a <-> E. b e. ran E suc b = a ) |
| 17 | 4 5 6 | mp2b | |- ran E C_ _om |
| 18 | 17 | sseli | |- ( b e. ran E -> b e. _om ) |
| 19 | peano2 | |- ( b e. _om -> suc b e. _om ) |
|
| 20 | 18 19 | syl | |- ( b e. ran E -> suc b e. _om ) |
| 21 | 1 | fin1a2lem5 | |- ( b e. _om -> ( b e. ran E <-> -. suc b e. ran E ) ) |
| 22 | 21 | biimpd | |- ( b e. _om -> ( b e. ran E -> -. suc b e. ran E ) ) |
| 23 | 18 22 | mpcom | |- ( b e. ran E -> -. suc b e. ran E ) |
| 24 | 20 23 | jca | |- ( b e. ran E -> ( suc b e. _om /\ -. suc b e. ran E ) ) |
| 25 | eleq1 | |- ( suc b = a -> ( suc b e. _om <-> a e. _om ) ) |
|
| 26 | eleq1 | |- ( suc b = a -> ( suc b e. ran E <-> a e. ran E ) ) |
|
| 27 | 26 | notbid | |- ( suc b = a -> ( -. suc b e. ran E <-> -. a e. ran E ) ) |
| 28 | 25 27 | anbi12d | |- ( suc b = a -> ( ( suc b e. _om /\ -. suc b e. ran E ) <-> ( a e. _om /\ -. a e. ran E ) ) ) |
| 29 | 24 28 | syl5ibcom | |- ( b e. ran E -> ( suc b = a -> ( a e. _om /\ -. a e. ran E ) ) ) |
| 30 | 29 | rexlimiv | |- ( E. b e. ran E suc b = a -> ( a e. _om /\ -. a e. ran E ) ) |
| 31 | peano1 | |- (/) e. _om |
|
| 32 | 1 | fin1a2lem3 | |- ( (/) e. _om -> ( E ` (/) ) = ( 2o .o (/) ) ) |
| 33 | 31 32 | ax-mp | |- ( E ` (/) ) = ( 2o .o (/) ) |
| 34 | 2on | |- 2o e. On |
|
| 35 | om0 | |- ( 2o e. On -> ( 2o .o (/) ) = (/) ) |
|
| 36 | 34 35 | ax-mp | |- ( 2o .o (/) ) = (/) |
| 37 | 33 36 | eqtri | |- ( E ` (/) ) = (/) |
| 38 | f1fun | |- ( E : _om -1-1-> _om -> Fun E ) |
|
| 39 | 4 38 | ax-mp | |- Fun E |
| 40 | f1dm | |- ( E : _om -1-1-> _om -> dom E = _om ) |
|
| 41 | 4 40 | ax-mp | |- dom E = _om |
| 42 | 31 41 | eleqtrri | |- (/) e. dom E |
| 43 | fvelrn | |- ( ( Fun E /\ (/) e. dom E ) -> ( E ` (/) ) e. ran E ) |
|
| 44 | 39 42 43 | mp2an | |- ( E ` (/) ) e. ran E |
| 45 | 37 44 | eqeltrri | |- (/) e. ran E |
| 46 | eleq1 | |- ( a = (/) -> ( a e. ran E <-> (/) e. ran E ) ) |
|
| 47 | 45 46 | mpbiri | |- ( a = (/) -> a e. ran E ) |
| 48 | 47 | necon3bi | |- ( -. a e. ran E -> a =/= (/) ) |
| 49 | nnsuc | |- ( ( a e. _om /\ a =/= (/) ) -> E. b e. _om a = suc b ) |
|
| 50 | 48 49 | sylan2 | |- ( ( a e. _om /\ -. a e. ran E ) -> E. b e. _om a = suc b ) |
| 51 | eleq1 | |- ( a = suc b -> ( a e. _om <-> suc b e. _om ) ) |
|
| 52 | eleq1 | |- ( a = suc b -> ( a e. ran E <-> suc b e. ran E ) ) |
|
| 53 | 52 | notbid | |- ( a = suc b -> ( -. a e. ran E <-> -. suc b e. ran E ) ) |
| 54 | 51 53 | anbi12d | |- ( a = suc b -> ( ( a e. _om /\ -. a e. ran E ) <-> ( suc b e. _om /\ -. suc b e. ran E ) ) ) |
| 55 | 54 | anbi1d | |- ( a = suc b -> ( ( ( a e. _om /\ -. a e. ran E ) /\ b e. _om ) <-> ( ( suc b e. _om /\ -. suc b e. ran E ) /\ b e. _om ) ) ) |
| 56 | simplr | |- ( ( ( suc b e. _om /\ -. suc b e. ran E ) /\ b e. _om ) -> -. suc b e. ran E ) |
|
| 57 | 21 | adantl | |- ( ( ( suc b e. _om /\ -. suc b e. ran E ) /\ b e. _om ) -> ( b e. ran E <-> -. suc b e. ran E ) ) |
| 58 | 56 57 | mpbird | |- ( ( ( suc b e. _om /\ -. suc b e. ran E ) /\ b e. _om ) -> b e. ran E ) |
| 59 | 55 58 | biimtrdi | |- ( a = suc b -> ( ( ( a e. _om /\ -. a e. ran E ) /\ b e. _om ) -> b e. ran E ) ) |
| 60 | 59 | com12 | |- ( ( ( a e. _om /\ -. a e. ran E ) /\ b e. _om ) -> ( a = suc b -> b e. ran E ) ) |
| 61 | 60 | impr | |- ( ( ( a e. _om /\ -. a e. ran E ) /\ ( b e. _om /\ a = suc b ) ) -> b e. ran E ) |
| 62 | simprr | |- ( ( ( a e. _om /\ -. a e. ran E ) /\ ( b e. _om /\ a = suc b ) ) -> a = suc b ) |
|
| 63 | 62 | eqcomd | |- ( ( ( a e. _om /\ -. a e. ran E ) /\ ( b e. _om /\ a = suc b ) ) -> suc b = a ) |
| 64 | 50 61 63 | reximssdv | |- ( ( a e. _om /\ -. a e. ran E ) -> E. b e. ran E suc b = a ) |
| 65 | 30 64 | impbii | |- ( E. b e. ran E suc b = a <-> ( a e. _om /\ -. a e. ran E ) ) |
| 66 | 16 65 | bitri | |- ( E. b e. ran E ( S ` b ) = a <-> ( a e. _om /\ -. a e. ran E ) ) |
| 67 | f1fn | |- ( S : On -1-1-> On -> S Fn On ) |
|
| 68 | 3 67 | ax-mp | |- S Fn On |
| 69 | fvelimab | |- ( ( S Fn On /\ ran E C_ On ) -> ( a e. ( S " ran E ) <-> E. b e. ran E ( S ` b ) = a ) ) |
|
| 70 | 68 9 69 | mp2an | |- ( a e. ( S " ran E ) <-> E. b e. ran E ( S ` b ) = a ) |
| 71 | eldif | |- ( a e. ( _om \ ran E ) <-> ( a e. _om /\ -. a e. ran E ) ) |
|
| 72 | 66 70 71 | 3bitr4i | |- ( a e. ( S " ran E ) <-> a e. ( _om \ ran E ) ) |
| 73 | 72 | eqriv | |- ( S " ran E ) = ( _om \ ran E ) |
| 74 | f1oeq3 | |- ( ( S " ran E ) = ( _om \ ran E ) -> ( ( S |` ran E ) : ran E -1-1-onto-> ( S " ran E ) <-> ( S |` ran E ) : ran E -1-1-onto-> ( _om \ ran E ) ) ) |
|
| 75 | 73 74 | ax-mp | |- ( ( S |` ran E ) : ran E -1-1-onto-> ( S " ran E ) <-> ( S |` ran E ) : ran E -1-1-onto-> ( _om \ ran E ) ) |
| 76 | 11 75 | mpbi | |- ( S |` ran E ) : ran E -1-1-onto-> ( _om \ ran E ) |