This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin1a2 . (Contributed by Stefan O'Rear, 7-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fin1a2lem.b | ⊢ 𝐸 = ( 𝑥 ∈ ω ↦ ( 2o ·o 𝑥 ) ) | |
| Assertion | fin1a2lem5 | ⊢ ( 𝐴 ∈ ω → ( 𝐴 ∈ ran 𝐸 ↔ ¬ suc 𝐴 ∈ ran 𝐸 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin1a2lem.b | ⊢ 𝐸 = ( 𝑥 ∈ ω ↦ ( 2o ·o 𝑥 ) ) | |
| 2 | nneob | ⊢ ( 𝐴 ∈ ω → ( ∃ 𝑎 ∈ ω 𝐴 = ( 2o ·o 𝑎 ) ↔ ¬ ∃ 𝑎 ∈ ω suc 𝐴 = ( 2o ·o 𝑎 ) ) ) | |
| 3 | 1 | fin1a2lem4 | ⊢ 𝐸 : ω –1-1→ ω |
| 4 | f1fn | ⊢ ( 𝐸 : ω –1-1→ ω → 𝐸 Fn ω ) | |
| 5 | 3 4 | ax-mp | ⊢ 𝐸 Fn ω |
| 6 | fvelrnb | ⊢ ( 𝐸 Fn ω → ( 𝐴 ∈ ran 𝐸 ↔ ∃ 𝑎 ∈ ω ( 𝐸 ‘ 𝑎 ) = 𝐴 ) ) | |
| 7 | 5 6 | ax-mp | ⊢ ( 𝐴 ∈ ran 𝐸 ↔ ∃ 𝑎 ∈ ω ( 𝐸 ‘ 𝑎 ) = 𝐴 ) |
| 8 | eqcom | ⊢ ( ( 𝐸 ‘ 𝑎 ) = 𝐴 ↔ 𝐴 = ( 𝐸 ‘ 𝑎 ) ) | |
| 9 | 1 | fin1a2lem3 | ⊢ ( 𝑎 ∈ ω → ( 𝐸 ‘ 𝑎 ) = ( 2o ·o 𝑎 ) ) |
| 10 | 9 | eqeq2d | ⊢ ( 𝑎 ∈ ω → ( 𝐴 = ( 𝐸 ‘ 𝑎 ) ↔ 𝐴 = ( 2o ·o 𝑎 ) ) ) |
| 11 | 8 10 | bitrid | ⊢ ( 𝑎 ∈ ω → ( ( 𝐸 ‘ 𝑎 ) = 𝐴 ↔ 𝐴 = ( 2o ·o 𝑎 ) ) ) |
| 12 | 11 | rexbiia | ⊢ ( ∃ 𝑎 ∈ ω ( 𝐸 ‘ 𝑎 ) = 𝐴 ↔ ∃ 𝑎 ∈ ω 𝐴 = ( 2o ·o 𝑎 ) ) |
| 13 | 7 12 | bitri | ⊢ ( 𝐴 ∈ ran 𝐸 ↔ ∃ 𝑎 ∈ ω 𝐴 = ( 2o ·o 𝑎 ) ) |
| 14 | fvelrnb | ⊢ ( 𝐸 Fn ω → ( suc 𝐴 ∈ ran 𝐸 ↔ ∃ 𝑎 ∈ ω ( 𝐸 ‘ 𝑎 ) = suc 𝐴 ) ) | |
| 15 | 5 14 | ax-mp | ⊢ ( suc 𝐴 ∈ ran 𝐸 ↔ ∃ 𝑎 ∈ ω ( 𝐸 ‘ 𝑎 ) = suc 𝐴 ) |
| 16 | eqcom | ⊢ ( ( 𝐸 ‘ 𝑎 ) = suc 𝐴 ↔ suc 𝐴 = ( 𝐸 ‘ 𝑎 ) ) | |
| 17 | 9 | eqeq2d | ⊢ ( 𝑎 ∈ ω → ( suc 𝐴 = ( 𝐸 ‘ 𝑎 ) ↔ suc 𝐴 = ( 2o ·o 𝑎 ) ) ) |
| 18 | 16 17 | bitrid | ⊢ ( 𝑎 ∈ ω → ( ( 𝐸 ‘ 𝑎 ) = suc 𝐴 ↔ suc 𝐴 = ( 2o ·o 𝑎 ) ) ) |
| 19 | 18 | rexbiia | ⊢ ( ∃ 𝑎 ∈ ω ( 𝐸 ‘ 𝑎 ) = suc 𝐴 ↔ ∃ 𝑎 ∈ ω suc 𝐴 = ( 2o ·o 𝑎 ) ) |
| 20 | 15 19 | bitri | ⊢ ( suc 𝐴 ∈ ran 𝐸 ↔ ∃ 𝑎 ∈ ω suc 𝐴 = ( 2o ·o 𝑎 ) ) |
| 21 | 20 | notbii | ⊢ ( ¬ suc 𝐴 ∈ ran 𝐸 ↔ ¬ ∃ 𝑎 ∈ ω suc 𝐴 = ( 2o ·o 𝑎 ) ) |
| 22 | 2 13 21 | 3bitr4g | ⊢ ( 𝐴 ∈ ω → ( 𝐴 ∈ ran 𝐸 ↔ ¬ suc 𝐴 ∈ ran 𝐸 ) ) |