This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin1a2 . (Contributed by Stefan O'Rear, 7-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fin1a2lem.b | ⊢ 𝐸 = ( 𝑥 ∈ ω ↦ ( 2o ·o 𝑥 ) ) | |
| Assertion | fin1a2lem4 | ⊢ 𝐸 : ω –1-1→ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin1a2lem.b | ⊢ 𝐸 = ( 𝑥 ∈ ω ↦ ( 2o ·o 𝑥 ) ) | |
| 2 | 2onn | ⊢ 2o ∈ ω | |
| 3 | nnmcl | ⊢ ( ( 2o ∈ ω ∧ 𝑥 ∈ ω ) → ( 2o ·o 𝑥 ) ∈ ω ) | |
| 4 | 2 3 | mpan | ⊢ ( 𝑥 ∈ ω → ( 2o ·o 𝑥 ) ∈ ω ) |
| 5 | 1 4 | fmpti | ⊢ 𝐸 : ω ⟶ ω |
| 6 | 1 | fin1a2lem3 | ⊢ ( 𝑎 ∈ ω → ( 𝐸 ‘ 𝑎 ) = ( 2o ·o 𝑎 ) ) |
| 7 | 1 | fin1a2lem3 | ⊢ ( 𝑏 ∈ ω → ( 𝐸 ‘ 𝑏 ) = ( 2o ·o 𝑏 ) ) |
| 8 | 6 7 | eqeqan12d | ⊢ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) → ( ( 𝐸 ‘ 𝑎 ) = ( 𝐸 ‘ 𝑏 ) ↔ ( 2o ·o 𝑎 ) = ( 2o ·o 𝑏 ) ) ) |
| 9 | 2on | ⊢ 2o ∈ On | |
| 10 | 9 | a1i | ⊢ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) → 2o ∈ On ) |
| 11 | nnon | ⊢ ( 𝑎 ∈ ω → 𝑎 ∈ On ) | |
| 12 | 11 | adantr | ⊢ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) → 𝑎 ∈ On ) |
| 13 | nnon | ⊢ ( 𝑏 ∈ ω → 𝑏 ∈ On ) | |
| 14 | 13 | adantl | ⊢ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) → 𝑏 ∈ On ) |
| 15 | 0lt1o | ⊢ ∅ ∈ 1o | |
| 16 | elelsuc | ⊢ ( ∅ ∈ 1o → ∅ ∈ suc 1o ) | |
| 17 | 15 16 | ax-mp | ⊢ ∅ ∈ suc 1o |
| 18 | df-2o | ⊢ 2o = suc 1o | |
| 19 | 17 18 | eleqtrri | ⊢ ∅ ∈ 2o |
| 20 | 19 | a1i | ⊢ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) → ∅ ∈ 2o ) |
| 21 | omcan | ⊢ ( ( ( 2o ∈ On ∧ 𝑎 ∈ On ∧ 𝑏 ∈ On ) ∧ ∅ ∈ 2o ) → ( ( 2o ·o 𝑎 ) = ( 2o ·o 𝑏 ) ↔ 𝑎 = 𝑏 ) ) | |
| 22 | 10 12 14 20 21 | syl31anc | ⊢ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) → ( ( 2o ·o 𝑎 ) = ( 2o ·o 𝑏 ) ↔ 𝑎 = 𝑏 ) ) |
| 23 | 8 22 | bitrd | ⊢ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) → ( ( 𝐸 ‘ 𝑎 ) = ( 𝐸 ‘ 𝑏 ) ↔ 𝑎 = 𝑏 ) ) |
| 24 | 23 | biimpd | ⊢ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) → ( ( 𝐸 ‘ 𝑎 ) = ( 𝐸 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) |
| 25 | 24 | rgen2 | ⊢ ∀ 𝑎 ∈ ω ∀ 𝑏 ∈ ω ( ( 𝐸 ‘ 𝑎 ) = ( 𝐸 ‘ 𝑏 ) → 𝑎 = 𝑏 ) |
| 26 | dff13 | ⊢ ( 𝐸 : ω –1-1→ ω ↔ ( 𝐸 : ω ⟶ ω ∧ ∀ 𝑎 ∈ ω ∀ 𝑏 ∈ ω ( ( 𝐸 ‘ 𝑎 ) = ( 𝐸 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) ) | |
| 27 | 5 25 26 | mpbir2an | ⊢ 𝐸 : ω –1-1→ ω |