This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin1a2 . Split a III-infinite set in two pieces. (Contributed by Stefan O'Rear, 7-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fin1a2lem.b | ⊢ 𝐸 = ( 𝑥 ∈ ω ↦ ( 2o ·o 𝑥 ) ) | |
| fin1a2lem.aa | ⊢ 𝑆 = ( 𝑥 ∈ On ↦ suc 𝑥 ) | ||
| Assertion | fin1a2lem7 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑦 ∈ FinIII ∨ ( 𝐴 ∖ 𝑦 ) ∈ FinIII ) ) → 𝐴 ∈ FinIII ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin1a2lem.b | ⊢ 𝐸 = ( 𝑥 ∈ ω ↦ ( 2o ·o 𝑥 ) ) | |
| 2 | fin1a2lem.aa | ⊢ 𝑆 = ( 𝑥 ∈ On ↦ suc 𝑥 ) | |
| 3 | peano1 | ⊢ ∅ ∈ ω | |
| 4 | ne0i | ⊢ ( ∅ ∈ ω → ω ≠ ∅ ) | |
| 5 | brwdomn0 | ⊢ ( ω ≠ ∅ → ( ω ≼* 𝐴 ↔ ∃ 𝑓 𝑓 : 𝐴 –onto→ ω ) ) | |
| 6 | 3 4 5 | mp2b | ⊢ ( ω ≼* 𝐴 ↔ ∃ 𝑓 𝑓 : 𝐴 –onto→ ω ) |
| 7 | vex | ⊢ 𝑓 ∈ V | |
| 8 | fof | ⊢ ( 𝑓 : 𝐴 –onto→ ω → 𝑓 : 𝐴 ⟶ ω ) | |
| 9 | dmfex | ⊢ ( ( 𝑓 ∈ V ∧ 𝑓 : 𝐴 ⟶ ω ) → 𝐴 ∈ V ) | |
| 10 | 7 8 9 | sylancr | ⊢ ( 𝑓 : 𝐴 –onto→ ω → 𝐴 ∈ V ) |
| 11 | cnvimass | ⊢ ( ◡ 𝑓 “ ran 𝐸 ) ⊆ dom 𝑓 | |
| 12 | 11 8 | fssdm | ⊢ ( 𝑓 : 𝐴 –onto→ ω → ( ◡ 𝑓 “ ran 𝐸 ) ⊆ 𝐴 ) |
| 13 | 10 12 | sselpwd | ⊢ ( 𝑓 : 𝐴 –onto→ ω → ( ◡ 𝑓 “ ran 𝐸 ) ∈ 𝒫 𝐴 ) |
| 14 | 1 | fin1a2lem4 | ⊢ 𝐸 : ω –1-1→ ω |
| 15 | f1cnv | ⊢ ( 𝐸 : ω –1-1→ ω → ◡ 𝐸 : ran 𝐸 –1-1-onto→ ω ) | |
| 16 | f1ofo | ⊢ ( ◡ 𝐸 : ran 𝐸 –1-1-onto→ ω → ◡ 𝐸 : ran 𝐸 –onto→ ω ) | |
| 17 | 14 15 16 | mp2b | ⊢ ◡ 𝐸 : ran 𝐸 –onto→ ω |
| 18 | fofun | ⊢ ( ◡ 𝐸 : ran 𝐸 –onto→ ω → Fun ◡ 𝐸 ) | |
| 19 | 17 18 | ax-mp | ⊢ Fun ◡ 𝐸 |
| 20 | 7 | resex | ⊢ ( 𝑓 ↾ ( ◡ 𝑓 “ ran 𝐸 ) ) ∈ V |
| 21 | cofunexg | ⊢ ( ( Fun ◡ 𝐸 ∧ ( 𝑓 ↾ ( ◡ 𝑓 “ ran 𝐸 ) ) ∈ V ) → ( ◡ 𝐸 ∘ ( 𝑓 ↾ ( ◡ 𝑓 “ ran 𝐸 ) ) ) ∈ V ) | |
| 22 | 19 20 21 | mp2an | ⊢ ( ◡ 𝐸 ∘ ( 𝑓 ↾ ( ◡ 𝑓 “ ran 𝐸 ) ) ) ∈ V |
| 23 | fofun | ⊢ ( 𝑓 : 𝐴 –onto→ ω → Fun 𝑓 ) | |
| 24 | fores | ⊢ ( ( Fun 𝑓 ∧ ( ◡ 𝑓 “ ran 𝐸 ) ⊆ dom 𝑓 ) → ( 𝑓 ↾ ( ◡ 𝑓 “ ran 𝐸 ) ) : ( ◡ 𝑓 “ ran 𝐸 ) –onto→ ( 𝑓 “ ( ◡ 𝑓 “ ran 𝐸 ) ) ) | |
| 25 | 23 11 24 | sylancl | ⊢ ( 𝑓 : 𝐴 –onto→ ω → ( 𝑓 ↾ ( ◡ 𝑓 “ ran 𝐸 ) ) : ( ◡ 𝑓 “ ran 𝐸 ) –onto→ ( 𝑓 “ ( ◡ 𝑓 “ ran 𝐸 ) ) ) |
| 26 | f1f | ⊢ ( 𝐸 : ω –1-1→ ω → 𝐸 : ω ⟶ ω ) | |
| 27 | frn | ⊢ ( 𝐸 : ω ⟶ ω → ran 𝐸 ⊆ ω ) | |
| 28 | 14 26 27 | mp2b | ⊢ ran 𝐸 ⊆ ω |
| 29 | foimacnv | ⊢ ( ( 𝑓 : 𝐴 –onto→ ω ∧ ran 𝐸 ⊆ ω ) → ( 𝑓 “ ( ◡ 𝑓 “ ran 𝐸 ) ) = ran 𝐸 ) | |
| 30 | 28 29 | mpan2 | ⊢ ( 𝑓 : 𝐴 –onto→ ω → ( 𝑓 “ ( ◡ 𝑓 “ ran 𝐸 ) ) = ran 𝐸 ) |
| 31 | foeq3 | ⊢ ( ( 𝑓 “ ( ◡ 𝑓 “ ran 𝐸 ) ) = ran 𝐸 → ( ( 𝑓 ↾ ( ◡ 𝑓 “ ran 𝐸 ) ) : ( ◡ 𝑓 “ ran 𝐸 ) –onto→ ( 𝑓 “ ( ◡ 𝑓 “ ran 𝐸 ) ) ↔ ( 𝑓 ↾ ( ◡ 𝑓 “ ran 𝐸 ) ) : ( ◡ 𝑓 “ ran 𝐸 ) –onto→ ran 𝐸 ) ) | |
| 32 | 30 31 | syl | ⊢ ( 𝑓 : 𝐴 –onto→ ω → ( ( 𝑓 ↾ ( ◡ 𝑓 “ ran 𝐸 ) ) : ( ◡ 𝑓 “ ran 𝐸 ) –onto→ ( 𝑓 “ ( ◡ 𝑓 “ ran 𝐸 ) ) ↔ ( 𝑓 ↾ ( ◡ 𝑓 “ ran 𝐸 ) ) : ( ◡ 𝑓 “ ran 𝐸 ) –onto→ ran 𝐸 ) ) |
| 33 | 25 32 | mpbid | ⊢ ( 𝑓 : 𝐴 –onto→ ω → ( 𝑓 ↾ ( ◡ 𝑓 “ ran 𝐸 ) ) : ( ◡ 𝑓 “ ran 𝐸 ) –onto→ ran 𝐸 ) |
| 34 | foco | ⊢ ( ( ◡ 𝐸 : ran 𝐸 –onto→ ω ∧ ( 𝑓 ↾ ( ◡ 𝑓 “ ran 𝐸 ) ) : ( ◡ 𝑓 “ ran 𝐸 ) –onto→ ran 𝐸 ) → ( ◡ 𝐸 ∘ ( 𝑓 ↾ ( ◡ 𝑓 “ ran 𝐸 ) ) ) : ( ◡ 𝑓 “ ran 𝐸 ) –onto→ ω ) | |
| 35 | 17 33 34 | sylancr | ⊢ ( 𝑓 : 𝐴 –onto→ ω → ( ◡ 𝐸 ∘ ( 𝑓 ↾ ( ◡ 𝑓 “ ran 𝐸 ) ) ) : ( ◡ 𝑓 “ ran 𝐸 ) –onto→ ω ) |
| 36 | fowdom | ⊢ ( ( ( ◡ 𝐸 ∘ ( 𝑓 ↾ ( ◡ 𝑓 “ ran 𝐸 ) ) ) ∈ V ∧ ( ◡ 𝐸 ∘ ( 𝑓 ↾ ( ◡ 𝑓 “ ran 𝐸 ) ) ) : ( ◡ 𝑓 “ ran 𝐸 ) –onto→ ω ) → ω ≼* ( ◡ 𝑓 “ ran 𝐸 ) ) | |
| 37 | 22 35 36 | sylancr | ⊢ ( 𝑓 : 𝐴 –onto→ ω → ω ≼* ( ◡ 𝑓 “ ran 𝐸 ) ) |
| 38 | 7 | cnvex | ⊢ ◡ 𝑓 ∈ V |
| 39 | 38 | imaex | ⊢ ( ◡ 𝑓 “ ran 𝐸 ) ∈ V |
| 40 | isfin3-2 | ⊢ ( ( ◡ 𝑓 “ ran 𝐸 ) ∈ V → ( ( ◡ 𝑓 “ ran 𝐸 ) ∈ FinIII ↔ ¬ ω ≼* ( ◡ 𝑓 “ ran 𝐸 ) ) ) | |
| 41 | 39 40 | ax-mp | ⊢ ( ( ◡ 𝑓 “ ran 𝐸 ) ∈ FinIII ↔ ¬ ω ≼* ( ◡ 𝑓 “ ran 𝐸 ) ) |
| 42 | 41 | con2bii | ⊢ ( ω ≼* ( ◡ 𝑓 “ ran 𝐸 ) ↔ ¬ ( ◡ 𝑓 “ ran 𝐸 ) ∈ FinIII ) |
| 43 | 37 42 | sylib | ⊢ ( 𝑓 : 𝐴 –onto→ ω → ¬ ( ◡ 𝑓 “ ran 𝐸 ) ∈ FinIII ) |
| 44 | 1 2 | fin1a2lem6 | ⊢ ( 𝑆 ↾ ran 𝐸 ) : ran 𝐸 –1-1-onto→ ( ω ∖ ran 𝐸 ) |
| 45 | f1ocnv | ⊢ ( ( 𝑆 ↾ ran 𝐸 ) : ran 𝐸 –1-1-onto→ ( ω ∖ ran 𝐸 ) → ◡ ( 𝑆 ↾ ran 𝐸 ) : ( ω ∖ ran 𝐸 ) –1-1-onto→ ran 𝐸 ) | |
| 46 | f1ofo | ⊢ ( ◡ ( 𝑆 ↾ ran 𝐸 ) : ( ω ∖ ran 𝐸 ) –1-1-onto→ ran 𝐸 → ◡ ( 𝑆 ↾ ran 𝐸 ) : ( ω ∖ ran 𝐸 ) –onto→ ran 𝐸 ) | |
| 47 | 44 45 46 | mp2b | ⊢ ◡ ( 𝑆 ↾ ran 𝐸 ) : ( ω ∖ ran 𝐸 ) –onto→ ran 𝐸 |
| 48 | foco | ⊢ ( ( ◡ 𝐸 : ran 𝐸 –onto→ ω ∧ ◡ ( 𝑆 ↾ ran 𝐸 ) : ( ω ∖ ran 𝐸 ) –onto→ ran 𝐸 ) → ( ◡ 𝐸 ∘ ◡ ( 𝑆 ↾ ran 𝐸 ) ) : ( ω ∖ ran 𝐸 ) –onto→ ω ) | |
| 49 | 17 47 48 | mp2an | ⊢ ( ◡ 𝐸 ∘ ◡ ( 𝑆 ↾ ran 𝐸 ) ) : ( ω ∖ ran 𝐸 ) –onto→ ω |
| 50 | fofun | ⊢ ( ( ◡ 𝐸 ∘ ◡ ( 𝑆 ↾ ran 𝐸 ) ) : ( ω ∖ ran 𝐸 ) –onto→ ω → Fun ( ◡ 𝐸 ∘ ◡ ( 𝑆 ↾ ran 𝐸 ) ) ) | |
| 51 | 49 50 | ax-mp | ⊢ Fun ( ◡ 𝐸 ∘ ◡ ( 𝑆 ↾ ran 𝐸 ) ) |
| 52 | 7 | resex | ⊢ ( 𝑓 ↾ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) ∈ V |
| 53 | cofunexg | ⊢ ( ( Fun ( ◡ 𝐸 ∘ ◡ ( 𝑆 ↾ ran 𝐸 ) ) ∧ ( 𝑓 ↾ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) ∈ V ) → ( ( ◡ 𝐸 ∘ ◡ ( 𝑆 ↾ ran 𝐸 ) ) ∘ ( 𝑓 ↾ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) ) ∈ V ) | |
| 54 | 51 52 53 | mp2an | ⊢ ( ( ◡ 𝐸 ∘ ◡ ( 𝑆 ↾ ran 𝐸 ) ) ∘ ( 𝑓 ↾ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) ) ∈ V |
| 55 | difss | ⊢ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ⊆ 𝐴 | |
| 56 | 8 | fdmd | ⊢ ( 𝑓 : 𝐴 –onto→ ω → dom 𝑓 = 𝐴 ) |
| 57 | 55 56 | sseqtrrid | ⊢ ( 𝑓 : 𝐴 –onto→ ω → ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ⊆ dom 𝑓 ) |
| 58 | fores | ⊢ ( ( Fun 𝑓 ∧ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ⊆ dom 𝑓 ) → ( 𝑓 ↾ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) : ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) –onto→ ( 𝑓 “ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) ) | |
| 59 | 23 57 58 | syl2anc | ⊢ ( 𝑓 : 𝐴 –onto→ ω → ( 𝑓 ↾ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) : ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) –onto→ ( 𝑓 “ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) ) |
| 60 | funcnvcnv | ⊢ ( Fun 𝑓 → Fun ◡ ◡ 𝑓 ) | |
| 61 | imadif | ⊢ ( Fun ◡ ◡ 𝑓 → ( ◡ 𝑓 “ ( ω ∖ ran 𝐸 ) ) = ( ( ◡ 𝑓 “ ω ) ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) | |
| 62 | 23 60 61 | 3syl | ⊢ ( 𝑓 : 𝐴 –onto→ ω → ( ◡ 𝑓 “ ( ω ∖ ran 𝐸 ) ) = ( ( ◡ 𝑓 “ ω ) ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) |
| 63 | 62 | imaeq2d | ⊢ ( 𝑓 : 𝐴 –onto→ ω → ( 𝑓 “ ( ◡ 𝑓 “ ( ω ∖ ran 𝐸 ) ) ) = ( 𝑓 “ ( ( ◡ 𝑓 “ ω ) ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) ) |
| 64 | difss | ⊢ ( ω ∖ ran 𝐸 ) ⊆ ω | |
| 65 | foimacnv | ⊢ ( ( 𝑓 : 𝐴 –onto→ ω ∧ ( ω ∖ ran 𝐸 ) ⊆ ω ) → ( 𝑓 “ ( ◡ 𝑓 “ ( ω ∖ ran 𝐸 ) ) ) = ( ω ∖ ran 𝐸 ) ) | |
| 66 | 64 65 | mpan2 | ⊢ ( 𝑓 : 𝐴 –onto→ ω → ( 𝑓 “ ( ◡ 𝑓 “ ( ω ∖ ran 𝐸 ) ) ) = ( ω ∖ ran 𝐸 ) ) |
| 67 | fimacnv | ⊢ ( 𝑓 : 𝐴 ⟶ ω → ( ◡ 𝑓 “ ω ) = 𝐴 ) | |
| 68 | 8 67 | syl | ⊢ ( 𝑓 : 𝐴 –onto→ ω → ( ◡ 𝑓 “ ω ) = 𝐴 ) |
| 69 | 68 | difeq1d | ⊢ ( 𝑓 : 𝐴 –onto→ ω → ( ( ◡ 𝑓 “ ω ) ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) = ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) |
| 70 | 69 | imaeq2d | ⊢ ( 𝑓 : 𝐴 –onto→ ω → ( 𝑓 “ ( ( ◡ 𝑓 “ ω ) ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) = ( 𝑓 “ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) ) |
| 71 | 63 66 70 | 3eqtr3rd | ⊢ ( 𝑓 : 𝐴 –onto→ ω → ( 𝑓 “ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) = ( ω ∖ ran 𝐸 ) ) |
| 72 | foeq3 | ⊢ ( ( 𝑓 “ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) = ( ω ∖ ran 𝐸 ) → ( ( 𝑓 ↾ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) : ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) –onto→ ( 𝑓 “ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) ↔ ( 𝑓 ↾ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) : ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) –onto→ ( ω ∖ ran 𝐸 ) ) ) | |
| 73 | 71 72 | syl | ⊢ ( 𝑓 : 𝐴 –onto→ ω → ( ( 𝑓 ↾ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) : ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) –onto→ ( 𝑓 “ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) ↔ ( 𝑓 ↾ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) : ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) –onto→ ( ω ∖ ran 𝐸 ) ) ) |
| 74 | 59 73 | mpbid | ⊢ ( 𝑓 : 𝐴 –onto→ ω → ( 𝑓 ↾ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) : ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) –onto→ ( ω ∖ ran 𝐸 ) ) |
| 75 | foco | ⊢ ( ( ( ◡ 𝐸 ∘ ◡ ( 𝑆 ↾ ran 𝐸 ) ) : ( ω ∖ ran 𝐸 ) –onto→ ω ∧ ( 𝑓 ↾ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) : ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) –onto→ ( ω ∖ ran 𝐸 ) ) → ( ( ◡ 𝐸 ∘ ◡ ( 𝑆 ↾ ran 𝐸 ) ) ∘ ( 𝑓 ↾ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) ) : ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) –onto→ ω ) | |
| 76 | 49 74 75 | sylancr | ⊢ ( 𝑓 : 𝐴 –onto→ ω → ( ( ◡ 𝐸 ∘ ◡ ( 𝑆 ↾ ran 𝐸 ) ) ∘ ( 𝑓 ↾ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) ) : ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) –onto→ ω ) |
| 77 | fowdom | ⊢ ( ( ( ( ◡ 𝐸 ∘ ◡ ( 𝑆 ↾ ran 𝐸 ) ) ∘ ( 𝑓 ↾ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) ) ∈ V ∧ ( ( ◡ 𝐸 ∘ ◡ ( 𝑆 ↾ ran 𝐸 ) ) ∘ ( 𝑓 ↾ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) ) : ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) –onto→ ω ) → ω ≼* ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) | |
| 78 | 54 76 77 | sylancr | ⊢ ( 𝑓 : 𝐴 –onto→ ω → ω ≼* ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) |
| 79 | difexg | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ∈ V ) | |
| 80 | isfin3-2 | ⊢ ( ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ∈ V → ( ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ∈ FinIII ↔ ¬ ω ≼* ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) ) | |
| 81 | 10 79 80 | 3syl | ⊢ ( 𝑓 : 𝐴 –onto→ ω → ( ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ∈ FinIII ↔ ¬ ω ≼* ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) ) |
| 82 | 81 | con2bid | ⊢ ( 𝑓 : 𝐴 –onto→ ω → ( ω ≼* ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ↔ ¬ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ∈ FinIII ) ) |
| 83 | 78 82 | mpbid | ⊢ ( 𝑓 : 𝐴 –onto→ ω → ¬ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ∈ FinIII ) |
| 84 | eleq1 | ⊢ ( 𝑦 = ( ◡ 𝑓 “ ran 𝐸 ) → ( 𝑦 ∈ FinIII ↔ ( ◡ 𝑓 “ ran 𝐸 ) ∈ FinIII ) ) | |
| 85 | difeq2 | ⊢ ( 𝑦 = ( ◡ 𝑓 “ ran 𝐸 ) → ( 𝐴 ∖ 𝑦 ) = ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) | |
| 86 | 85 | eleq1d | ⊢ ( 𝑦 = ( ◡ 𝑓 “ ran 𝐸 ) → ( ( 𝐴 ∖ 𝑦 ) ∈ FinIII ↔ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ∈ FinIII ) ) |
| 87 | 84 86 | orbi12d | ⊢ ( 𝑦 = ( ◡ 𝑓 “ ran 𝐸 ) → ( ( 𝑦 ∈ FinIII ∨ ( 𝐴 ∖ 𝑦 ) ∈ FinIII ) ↔ ( ( ◡ 𝑓 “ ran 𝐸 ) ∈ FinIII ∨ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ∈ FinIII ) ) ) |
| 88 | 87 | notbid | ⊢ ( 𝑦 = ( ◡ 𝑓 “ ran 𝐸 ) → ( ¬ ( 𝑦 ∈ FinIII ∨ ( 𝐴 ∖ 𝑦 ) ∈ FinIII ) ↔ ¬ ( ( ◡ 𝑓 “ ran 𝐸 ) ∈ FinIII ∨ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ∈ FinIII ) ) ) |
| 89 | ioran | ⊢ ( ¬ ( ( ◡ 𝑓 “ ran 𝐸 ) ∈ FinIII ∨ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ∈ FinIII ) ↔ ( ¬ ( ◡ 𝑓 “ ran 𝐸 ) ∈ FinIII ∧ ¬ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ∈ FinIII ) ) | |
| 90 | 88 89 | bitrdi | ⊢ ( 𝑦 = ( ◡ 𝑓 “ ran 𝐸 ) → ( ¬ ( 𝑦 ∈ FinIII ∨ ( 𝐴 ∖ 𝑦 ) ∈ FinIII ) ↔ ( ¬ ( ◡ 𝑓 “ ran 𝐸 ) ∈ FinIII ∧ ¬ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ∈ FinIII ) ) ) |
| 91 | 90 | rspcev | ⊢ ( ( ( ◡ 𝑓 “ ran 𝐸 ) ∈ 𝒫 𝐴 ∧ ( ¬ ( ◡ 𝑓 “ ran 𝐸 ) ∈ FinIII ∧ ¬ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ∈ FinIII ) ) → ∃ 𝑦 ∈ 𝒫 𝐴 ¬ ( 𝑦 ∈ FinIII ∨ ( 𝐴 ∖ 𝑦 ) ∈ FinIII ) ) |
| 92 | 13 43 83 91 | syl12anc | ⊢ ( 𝑓 : 𝐴 –onto→ ω → ∃ 𝑦 ∈ 𝒫 𝐴 ¬ ( 𝑦 ∈ FinIII ∨ ( 𝐴 ∖ 𝑦 ) ∈ FinIII ) ) |
| 93 | rexnal | ⊢ ( ∃ 𝑦 ∈ 𝒫 𝐴 ¬ ( 𝑦 ∈ FinIII ∨ ( 𝐴 ∖ 𝑦 ) ∈ FinIII ) ↔ ¬ ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑦 ∈ FinIII ∨ ( 𝐴 ∖ 𝑦 ) ∈ FinIII ) ) | |
| 94 | 92 93 | sylib | ⊢ ( 𝑓 : 𝐴 –onto→ ω → ¬ ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑦 ∈ FinIII ∨ ( 𝐴 ∖ 𝑦 ) ∈ FinIII ) ) |
| 95 | 94 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 : 𝐴 –onto→ ω → ¬ ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑦 ∈ FinIII ∨ ( 𝐴 ∖ 𝑦 ) ∈ FinIII ) ) |
| 96 | 6 95 | sylbi | ⊢ ( ω ≼* 𝐴 → ¬ ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑦 ∈ FinIII ∨ ( 𝐴 ∖ 𝑦 ) ∈ FinIII ) ) |
| 97 | 96 | con2i | ⊢ ( ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑦 ∈ FinIII ∨ ( 𝐴 ∖ 𝑦 ) ∈ FinIII ) → ¬ ω ≼* 𝐴 ) |
| 98 | isfin3-2 | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ FinIII ↔ ¬ ω ≼* 𝐴 ) ) | |
| 99 | 97 98 | imbitrrid | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑦 ∈ FinIII ∨ ( 𝐴 ∖ 𝑦 ) ∈ FinIII ) → 𝐴 ∈ FinIII ) ) |
| 100 | 99 | imp | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑦 ∈ FinIII ∨ ( 𝐴 ∖ 𝑦 ) ∈ FinIII ) ) → 𝐴 ∈ FinIII ) |