This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonzero natural number is a successor. (Contributed by NM, 18-Feb-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnsuc | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ ω 𝐴 = suc 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnlim | ⊢ ( 𝐴 ∈ ω → ¬ Lim 𝐴 ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐴 ≠ ∅ ) → ¬ Lim 𝐴 ) |
| 3 | nnord | ⊢ ( 𝐴 ∈ ω → Ord 𝐴 ) | |
| 4 | orduninsuc | ⊢ ( Ord 𝐴 → ( 𝐴 = ∪ 𝐴 ↔ ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) | |
| 5 | 4 | adantr | ⊢ ( ( Ord 𝐴 ∧ 𝐴 ≠ ∅ ) → ( 𝐴 = ∪ 𝐴 ↔ ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) |
| 6 | df-lim | ⊢ ( Lim 𝐴 ↔ ( Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴 ) ) | |
| 7 | 6 | biimpri | ⊢ ( ( Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴 ) → Lim 𝐴 ) |
| 8 | 7 | 3expia | ⊢ ( ( Ord 𝐴 ∧ 𝐴 ≠ ∅ ) → ( 𝐴 = ∪ 𝐴 → Lim 𝐴 ) ) |
| 9 | 5 8 | sylbird | ⊢ ( ( Ord 𝐴 ∧ 𝐴 ≠ ∅ ) → ( ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 → Lim 𝐴 ) ) |
| 10 | 3 9 | sylan | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐴 ≠ ∅ ) → ( ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 → Lim 𝐴 ) ) |
| 11 | 2 10 | mt3d | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) |
| 12 | eleq1 | ⊢ ( 𝐴 = suc 𝑥 → ( 𝐴 ∈ ω ↔ suc 𝑥 ∈ ω ) ) | |
| 13 | 12 | biimpcd | ⊢ ( 𝐴 ∈ ω → ( 𝐴 = suc 𝑥 → suc 𝑥 ∈ ω ) ) |
| 14 | peano2b | ⊢ ( 𝑥 ∈ ω ↔ suc 𝑥 ∈ ω ) | |
| 15 | 13 14 | imbitrrdi | ⊢ ( 𝐴 ∈ ω → ( 𝐴 = suc 𝑥 → 𝑥 ∈ ω ) ) |
| 16 | 15 | ancrd | ⊢ ( 𝐴 ∈ ω → ( 𝐴 = suc 𝑥 → ( 𝑥 ∈ ω ∧ 𝐴 = suc 𝑥 ) ) ) |
| 17 | 16 | adantld | ⊢ ( 𝐴 ∈ ω → ( ( 𝑥 ∈ On ∧ 𝐴 = suc 𝑥 ) → ( 𝑥 ∈ ω ∧ 𝐴 = suc 𝑥 ) ) ) |
| 18 | 17 | reximdv2 | ⊢ ( 𝐴 ∈ ω → ( ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 → ∃ 𝑥 ∈ ω 𝐴 = suc 𝑥 ) ) |
| 19 | 18 | adantr | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐴 ≠ ∅ ) → ( ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 → ∃ 𝑥 ∈ ω 𝐴 = suc 𝑥 ) ) |
| 20 | 11 19 | mpd | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ ω 𝐴 = suc 𝑥 ) |