This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin1a2 . In a chain of finite sets, initial segments are finite. (Contributed by Stefan O'Rear, 8-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fin1a2lem9 | ⊢ ( ( [⊊] Or 𝑋 ∧ 𝑋 ⊆ Fin ∧ 𝐴 ∈ ω ) → { 𝑏 ∈ 𝑋 ∣ 𝑏 ≼ 𝐴 } ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onfin2 | ⊢ ω = ( On ∩ Fin ) | |
| 2 | inss2 | ⊢ ( On ∩ Fin ) ⊆ Fin | |
| 3 | 1 2 | eqsstri | ⊢ ω ⊆ Fin |
| 4 | peano2 | ⊢ ( 𝐴 ∈ ω → suc 𝐴 ∈ ω ) | |
| 5 | 3 4 | sselid | ⊢ ( 𝐴 ∈ ω → suc 𝐴 ∈ Fin ) |
| 6 | 5 | 3ad2ant3 | ⊢ ( ( [⊊] Or 𝑋 ∧ 𝑋 ⊆ Fin ∧ 𝐴 ∈ ω ) → suc 𝐴 ∈ Fin ) |
| 7 | 4 | 3ad2ant3 | ⊢ ( ( [⊊] Or 𝑋 ∧ 𝑋 ⊆ Fin ∧ 𝐴 ∈ ω ) → suc 𝐴 ∈ ω ) |
| 8 | breq1 | ⊢ ( 𝑏 = 𝑐 → ( 𝑏 ≼ 𝐴 ↔ 𝑐 ≼ 𝐴 ) ) | |
| 9 | 8 | elrab | ⊢ ( 𝑐 ∈ { 𝑏 ∈ 𝑋 ∣ 𝑏 ≼ 𝐴 } ↔ ( 𝑐 ∈ 𝑋 ∧ 𝑐 ≼ 𝐴 ) ) |
| 10 | simprr | ⊢ ( ( ( [⊊] Or 𝑋 ∧ 𝑋 ⊆ Fin ∧ 𝐴 ∈ ω ) ∧ ( 𝑐 ∈ 𝑋 ∧ 𝑐 ≼ 𝐴 ) ) → 𝑐 ≼ 𝐴 ) | |
| 11 | simpl2 | ⊢ ( ( ( [⊊] Or 𝑋 ∧ 𝑋 ⊆ Fin ∧ 𝐴 ∈ ω ) ∧ ( 𝑐 ∈ 𝑋 ∧ 𝑐 ≼ 𝐴 ) ) → 𝑋 ⊆ Fin ) | |
| 12 | simprl | ⊢ ( ( ( [⊊] Or 𝑋 ∧ 𝑋 ⊆ Fin ∧ 𝐴 ∈ ω ) ∧ ( 𝑐 ∈ 𝑋 ∧ 𝑐 ≼ 𝐴 ) ) → 𝑐 ∈ 𝑋 ) | |
| 13 | 11 12 | sseldd | ⊢ ( ( ( [⊊] Or 𝑋 ∧ 𝑋 ⊆ Fin ∧ 𝐴 ∈ ω ) ∧ ( 𝑐 ∈ 𝑋 ∧ 𝑐 ≼ 𝐴 ) ) → 𝑐 ∈ Fin ) |
| 14 | finnum | ⊢ ( 𝑐 ∈ Fin → 𝑐 ∈ dom card ) | |
| 15 | 13 14 | syl | ⊢ ( ( ( [⊊] Or 𝑋 ∧ 𝑋 ⊆ Fin ∧ 𝐴 ∈ ω ) ∧ ( 𝑐 ∈ 𝑋 ∧ 𝑐 ≼ 𝐴 ) ) → 𝑐 ∈ dom card ) |
| 16 | simpl3 | ⊢ ( ( ( [⊊] Or 𝑋 ∧ 𝑋 ⊆ Fin ∧ 𝐴 ∈ ω ) ∧ ( 𝑐 ∈ 𝑋 ∧ 𝑐 ≼ 𝐴 ) ) → 𝐴 ∈ ω ) | |
| 17 | 3 16 | sselid | ⊢ ( ( ( [⊊] Or 𝑋 ∧ 𝑋 ⊆ Fin ∧ 𝐴 ∈ ω ) ∧ ( 𝑐 ∈ 𝑋 ∧ 𝑐 ≼ 𝐴 ) ) → 𝐴 ∈ Fin ) |
| 18 | finnum | ⊢ ( 𝐴 ∈ Fin → 𝐴 ∈ dom card ) | |
| 19 | 17 18 | syl | ⊢ ( ( ( [⊊] Or 𝑋 ∧ 𝑋 ⊆ Fin ∧ 𝐴 ∈ ω ) ∧ ( 𝑐 ∈ 𝑋 ∧ 𝑐 ≼ 𝐴 ) ) → 𝐴 ∈ dom card ) |
| 20 | carddom2 | ⊢ ( ( 𝑐 ∈ dom card ∧ 𝐴 ∈ dom card ) → ( ( card ‘ 𝑐 ) ⊆ ( card ‘ 𝐴 ) ↔ 𝑐 ≼ 𝐴 ) ) | |
| 21 | 15 19 20 | syl2anc | ⊢ ( ( ( [⊊] Or 𝑋 ∧ 𝑋 ⊆ Fin ∧ 𝐴 ∈ ω ) ∧ ( 𝑐 ∈ 𝑋 ∧ 𝑐 ≼ 𝐴 ) ) → ( ( card ‘ 𝑐 ) ⊆ ( card ‘ 𝐴 ) ↔ 𝑐 ≼ 𝐴 ) ) |
| 22 | 10 21 | mpbird | ⊢ ( ( ( [⊊] Or 𝑋 ∧ 𝑋 ⊆ Fin ∧ 𝐴 ∈ ω ) ∧ ( 𝑐 ∈ 𝑋 ∧ 𝑐 ≼ 𝐴 ) ) → ( card ‘ 𝑐 ) ⊆ ( card ‘ 𝐴 ) ) |
| 23 | 22 | ex | ⊢ ( ( [⊊] Or 𝑋 ∧ 𝑋 ⊆ Fin ∧ 𝐴 ∈ ω ) → ( ( 𝑐 ∈ 𝑋 ∧ 𝑐 ≼ 𝐴 ) → ( card ‘ 𝑐 ) ⊆ ( card ‘ 𝐴 ) ) ) |
| 24 | cardnn | ⊢ ( 𝐴 ∈ ω → ( card ‘ 𝐴 ) = 𝐴 ) | |
| 25 | 24 | sseq2d | ⊢ ( 𝐴 ∈ ω → ( ( card ‘ 𝑐 ) ⊆ ( card ‘ 𝐴 ) ↔ ( card ‘ 𝑐 ) ⊆ 𝐴 ) ) |
| 26 | cardon | ⊢ ( card ‘ 𝑐 ) ∈ On | |
| 27 | nnon | ⊢ ( 𝐴 ∈ ω → 𝐴 ∈ On ) | |
| 28 | onsssuc | ⊢ ( ( ( card ‘ 𝑐 ) ∈ On ∧ 𝐴 ∈ On ) → ( ( card ‘ 𝑐 ) ⊆ 𝐴 ↔ ( card ‘ 𝑐 ) ∈ suc 𝐴 ) ) | |
| 29 | 26 27 28 | sylancr | ⊢ ( 𝐴 ∈ ω → ( ( card ‘ 𝑐 ) ⊆ 𝐴 ↔ ( card ‘ 𝑐 ) ∈ suc 𝐴 ) ) |
| 30 | 25 29 | bitrd | ⊢ ( 𝐴 ∈ ω → ( ( card ‘ 𝑐 ) ⊆ ( card ‘ 𝐴 ) ↔ ( card ‘ 𝑐 ) ∈ suc 𝐴 ) ) |
| 31 | 30 | 3ad2ant3 | ⊢ ( ( [⊊] Or 𝑋 ∧ 𝑋 ⊆ Fin ∧ 𝐴 ∈ ω ) → ( ( card ‘ 𝑐 ) ⊆ ( card ‘ 𝐴 ) ↔ ( card ‘ 𝑐 ) ∈ suc 𝐴 ) ) |
| 32 | 23 31 | sylibd | ⊢ ( ( [⊊] Or 𝑋 ∧ 𝑋 ⊆ Fin ∧ 𝐴 ∈ ω ) → ( ( 𝑐 ∈ 𝑋 ∧ 𝑐 ≼ 𝐴 ) → ( card ‘ 𝑐 ) ∈ suc 𝐴 ) ) |
| 33 | 9 32 | biimtrid | ⊢ ( ( [⊊] Or 𝑋 ∧ 𝑋 ⊆ Fin ∧ 𝐴 ∈ ω ) → ( 𝑐 ∈ { 𝑏 ∈ 𝑋 ∣ 𝑏 ≼ 𝐴 } → ( card ‘ 𝑐 ) ∈ suc 𝐴 ) ) |
| 34 | elrabi | ⊢ ( 𝑐 ∈ { 𝑏 ∈ 𝑋 ∣ 𝑏 ≼ 𝐴 } → 𝑐 ∈ 𝑋 ) | |
| 35 | elrabi | ⊢ ( 𝑑 ∈ { 𝑏 ∈ 𝑋 ∣ 𝑏 ≼ 𝐴 } → 𝑑 ∈ 𝑋 ) | |
| 36 | ssel | ⊢ ( 𝑋 ⊆ Fin → ( 𝑐 ∈ 𝑋 → 𝑐 ∈ Fin ) ) | |
| 37 | ssel | ⊢ ( 𝑋 ⊆ Fin → ( 𝑑 ∈ 𝑋 → 𝑑 ∈ Fin ) ) | |
| 38 | 36 37 | anim12d | ⊢ ( 𝑋 ⊆ Fin → ( ( 𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋 ) → ( 𝑐 ∈ Fin ∧ 𝑑 ∈ Fin ) ) ) |
| 39 | 38 | imp | ⊢ ( ( 𝑋 ⊆ Fin ∧ ( 𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋 ) ) → ( 𝑐 ∈ Fin ∧ 𝑑 ∈ Fin ) ) |
| 40 | 39 | 3ad2antl2 | ⊢ ( ( ( [⊊] Or 𝑋 ∧ 𝑋 ⊆ Fin ∧ 𝐴 ∈ ω ) ∧ ( 𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋 ) ) → ( 𝑐 ∈ Fin ∧ 𝑑 ∈ Fin ) ) |
| 41 | sorpssi | ⊢ ( ( [⊊] Or 𝑋 ∧ ( 𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋 ) ) → ( 𝑐 ⊆ 𝑑 ∨ 𝑑 ⊆ 𝑐 ) ) | |
| 42 | 41 | 3ad2antl1 | ⊢ ( ( ( [⊊] Or 𝑋 ∧ 𝑋 ⊆ Fin ∧ 𝐴 ∈ ω ) ∧ ( 𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋 ) ) → ( 𝑐 ⊆ 𝑑 ∨ 𝑑 ⊆ 𝑐 ) ) |
| 43 | finnum | ⊢ ( 𝑑 ∈ Fin → 𝑑 ∈ dom card ) | |
| 44 | carden2 | ⊢ ( ( 𝑐 ∈ dom card ∧ 𝑑 ∈ dom card ) → ( ( card ‘ 𝑐 ) = ( card ‘ 𝑑 ) ↔ 𝑐 ≈ 𝑑 ) ) | |
| 45 | 14 43 44 | syl2an | ⊢ ( ( 𝑐 ∈ Fin ∧ 𝑑 ∈ Fin ) → ( ( card ‘ 𝑐 ) = ( card ‘ 𝑑 ) ↔ 𝑐 ≈ 𝑑 ) ) |
| 46 | 45 | adantr | ⊢ ( ( ( 𝑐 ∈ Fin ∧ 𝑑 ∈ Fin ) ∧ ( 𝑐 ⊆ 𝑑 ∨ 𝑑 ⊆ 𝑐 ) ) → ( ( card ‘ 𝑐 ) = ( card ‘ 𝑑 ) ↔ 𝑐 ≈ 𝑑 ) ) |
| 47 | fin23lem25 | ⊢ ( ( 𝑐 ∈ Fin ∧ 𝑑 ∈ Fin ∧ ( 𝑐 ⊆ 𝑑 ∨ 𝑑 ⊆ 𝑐 ) ) → ( 𝑐 ≈ 𝑑 ↔ 𝑐 = 𝑑 ) ) | |
| 48 | 47 | 3expa | ⊢ ( ( ( 𝑐 ∈ Fin ∧ 𝑑 ∈ Fin ) ∧ ( 𝑐 ⊆ 𝑑 ∨ 𝑑 ⊆ 𝑐 ) ) → ( 𝑐 ≈ 𝑑 ↔ 𝑐 = 𝑑 ) ) |
| 49 | 48 | biimpd | ⊢ ( ( ( 𝑐 ∈ Fin ∧ 𝑑 ∈ Fin ) ∧ ( 𝑐 ⊆ 𝑑 ∨ 𝑑 ⊆ 𝑐 ) ) → ( 𝑐 ≈ 𝑑 → 𝑐 = 𝑑 ) ) |
| 50 | 46 49 | sylbid | ⊢ ( ( ( 𝑐 ∈ Fin ∧ 𝑑 ∈ Fin ) ∧ ( 𝑐 ⊆ 𝑑 ∨ 𝑑 ⊆ 𝑐 ) ) → ( ( card ‘ 𝑐 ) = ( card ‘ 𝑑 ) → 𝑐 = 𝑑 ) ) |
| 51 | 40 42 50 | syl2anc | ⊢ ( ( ( [⊊] Or 𝑋 ∧ 𝑋 ⊆ Fin ∧ 𝐴 ∈ ω ) ∧ ( 𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋 ) ) → ( ( card ‘ 𝑐 ) = ( card ‘ 𝑑 ) → 𝑐 = 𝑑 ) ) |
| 52 | fveq2 | ⊢ ( 𝑐 = 𝑑 → ( card ‘ 𝑐 ) = ( card ‘ 𝑑 ) ) | |
| 53 | 51 52 | impbid1 | ⊢ ( ( ( [⊊] Or 𝑋 ∧ 𝑋 ⊆ Fin ∧ 𝐴 ∈ ω ) ∧ ( 𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋 ) ) → ( ( card ‘ 𝑐 ) = ( card ‘ 𝑑 ) ↔ 𝑐 = 𝑑 ) ) |
| 54 | 53 | ex | ⊢ ( ( [⊊] Or 𝑋 ∧ 𝑋 ⊆ Fin ∧ 𝐴 ∈ ω ) → ( ( 𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋 ) → ( ( card ‘ 𝑐 ) = ( card ‘ 𝑑 ) ↔ 𝑐 = 𝑑 ) ) ) |
| 55 | 34 35 54 | syl2ani | ⊢ ( ( [⊊] Or 𝑋 ∧ 𝑋 ⊆ Fin ∧ 𝐴 ∈ ω ) → ( ( 𝑐 ∈ { 𝑏 ∈ 𝑋 ∣ 𝑏 ≼ 𝐴 } ∧ 𝑑 ∈ { 𝑏 ∈ 𝑋 ∣ 𝑏 ≼ 𝐴 } ) → ( ( card ‘ 𝑐 ) = ( card ‘ 𝑑 ) ↔ 𝑐 = 𝑑 ) ) ) |
| 56 | 33 55 | dom2d | ⊢ ( ( [⊊] Or 𝑋 ∧ 𝑋 ⊆ Fin ∧ 𝐴 ∈ ω ) → ( suc 𝐴 ∈ ω → { 𝑏 ∈ 𝑋 ∣ 𝑏 ≼ 𝐴 } ≼ suc 𝐴 ) ) |
| 57 | 7 56 | mpd | ⊢ ( ( [⊊] Or 𝑋 ∧ 𝑋 ⊆ Fin ∧ 𝐴 ∈ ω ) → { 𝑏 ∈ 𝑋 ∣ 𝑏 ≼ 𝐴 } ≼ suc 𝐴 ) |
| 58 | domfi | ⊢ ( ( suc 𝐴 ∈ Fin ∧ { 𝑏 ∈ 𝑋 ∣ 𝑏 ≼ 𝐴 } ≼ suc 𝐴 ) → { 𝑏 ∈ 𝑋 ∣ 𝑏 ≼ 𝐴 } ∈ Fin ) | |
| 59 | 6 57 58 | syl2anc | ⊢ ( ( [⊊] Or 𝑋 ∧ 𝑋 ⊆ Fin ∧ 𝐴 ∈ ω ) → { 𝑏 ∈ 𝑋 ∣ 𝑏 ≼ 𝐴 } ∈ Fin ) |