This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of a chain of sets. (Contributed by Stefan O'Rear, 2-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sorpssi | ⊢ ( ( [⊊] Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | solin | ⊢ ( ( [⊊] Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝐵 [⊊] 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 [⊊] 𝐵 ) ) | |
| 2 | elex | ⊢ ( 𝐶 ∈ 𝐴 → 𝐶 ∈ V ) | |
| 3 | 2 | ad2antll | ⊢ ( ( [⊊] Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → 𝐶 ∈ V ) |
| 4 | brrpssg | ⊢ ( 𝐶 ∈ V → ( 𝐵 [⊊] 𝐶 ↔ 𝐵 ⊊ 𝐶 ) ) | |
| 5 | 3 4 | syl | ⊢ ( ( [⊊] Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝐵 [⊊] 𝐶 ↔ 𝐵 ⊊ 𝐶 ) ) |
| 6 | biidd | ⊢ ( ( [⊊] Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝐵 = 𝐶 ↔ 𝐵 = 𝐶 ) ) | |
| 7 | elex | ⊢ ( 𝐵 ∈ 𝐴 → 𝐵 ∈ V ) | |
| 8 | 7 | ad2antrl | ⊢ ( ( [⊊] Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → 𝐵 ∈ V ) |
| 9 | brrpssg | ⊢ ( 𝐵 ∈ V → ( 𝐶 [⊊] 𝐵 ↔ 𝐶 ⊊ 𝐵 ) ) | |
| 10 | 8 9 | syl | ⊢ ( ( [⊊] Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝐶 [⊊] 𝐵 ↔ 𝐶 ⊊ 𝐵 ) ) |
| 11 | 5 6 10 | 3orbi123d | ⊢ ( ( [⊊] Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( ( 𝐵 [⊊] 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 [⊊] 𝐵 ) ↔ ( 𝐵 ⊊ 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 ⊊ 𝐵 ) ) ) |
| 12 | 1 11 | mpbid | ⊢ ( ( [⊊] Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝐵 ⊊ 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 ⊊ 𝐵 ) ) |
| 13 | sspsstri | ⊢ ( ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ↔ ( 𝐵 ⊊ 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 ⊊ 𝐵 ) ) | |
| 14 | 12 13 | sylibr | ⊢ ( ( [⊊] Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) |