This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of a set is empty iff the set is included in the singleton of the empty set. (Contributed by NM, 12-Sep-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uni0b | ⊢ ( ∪ 𝐴 = ∅ ↔ 𝐴 ⊆ { ∅ } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | velsn | ⊢ ( 𝑥 ∈ { ∅ } ↔ 𝑥 = ∅ ) | |
| 2 | 1 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝑥 ∈ { ∅ } ↔ ∀ 𝑥 ∈ 𝐴 𝑥 = ∅ ) |
| 3 | dfss3 | ⊢ ( 𝐴 ⊆ { ∅ } ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ { ∅ } ) | |
| 4 | neq0 | ⊢ ( ¬ ∪ 𝐴 = ∅ ↔ ∃ 𝑦 𝑦 ∈ ∪ 𝐴 ) | |
| 5 | rexcom4 | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 𝑦 ∈ 𝑥 ↔ ∃ 𝑦 ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝑥 ) | |
| 6 | neq0 | ⊢ ( ¬ 𝑥 = ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝑥 ) | |
| 7 | 6 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑥 = ∅ ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 𝑦 ∈ 𝑥 ) |
| 8 | eluni2 | ⊢ ( 𝑦 ∈ ∪ 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝑥 ) | |
| 9 | 8 | exbii | ⊢ ( ∃ 𝑦 𝑦 ∈ ∪ 𝐴 ↔ ∃ 𝑦 ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝑥 ) |
| 10 | 5 7 9 | 3bitr4ri | ⊢ ( ∃ 𝑦 𝑦 ∈ ∪ 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 ¬ 𝑥 = ∅ ) |
| 11 | rexnal | ⊢ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑥 = ∅ ↔ ¬ ∀ 𝑥 ∈ 𝐴 𝑥 = ∅ ) | |
| 12 | 4 10 11 | 3bitri | ⊢ ( ¬ ∪ 𝐴 = ∅ ↔ ¬ ∀ 𝑥 ∈ 𝐴 𝑥 = ∅ ) |
| 13 | 12 | con4bii | ⊢ ( ∪ 𝐴 = ∅ ↔ ∀ 𝑥 ∈ 𝐴 𝑥 = ∅ ) |
| 14 | 2 3 13 | 3bitr4ri | ⊢ ( ∪ 𝐴 = ∅ ↔ 𝐴 ⊆ { ∅ } ) |