This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin1a2 . A nonempty finite union of members of a chain is a member of the chain. (Contributed by Stefan O'Rear, 8-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fin1a2lem10 | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ∧ [⊊] Or 𝐴 ) → ∪ 𝐴 ∈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqneqall | ⊢ ( 𝑎 = ∅ → ( 𝑎 ≠ ∅ → ( [⊊] Or 𝑎 → ∪ 𝑎 ∈ 𝑎 ) ) ) | |
| 2 | tru | ⊢ ⊤ | |
| 3 | 2 | a1i | ⊢ ( 𝑎 = ∅ → ⊤ ) |
| 4 | 1 3 | 2thd | ⊢ ( 𝑎 = ∅ → ( ( 𝑎 ≠ ∅ → ( [⊊] Or 𝑎 → ∪ 𝑎 ∈ 𝑎 ) ) ↔ ⊤ ) ) |
| 5 | neeq1 | ⊢ ( 𝑎 = 𝑏 → ( 𝑎 ≠ ∅ ↔ 𝑏 ≠ ∅ ) ) | |
| 6 | soeq2 | ⊢ ( 𝑎 = 𝑏 → ( [⊊] Or 𝑎 ↔ [⊊] Or 𝑏 ) ) | |
| 7 | unieq | ⊢ ( 𝑎 = 𝑏 → ∪ 𝑎 = ∪ 𝑏 ) | |
| 8 | id | ⊢ ( 𝑎 = 𝑏 → 𝑎 = 𝑏 ) | |
| 9 | 7 8 | eleq12d | ⊢ ( 𝑎 = 𝑏 → ( ∪ 𝑎 ∈ 𝑎 ↔ ∪ 𝑏 ∈ 𝑏 ) ) |
| 10 | 6 9 | imbi12d | ⊢ ( 𝑎 = 𝑏 → ( ( [⊊] Or 𝑎 → ∪ 𝑎 ∈ 𝑎 ) ↔ ( [⊊] Or 𝑏 → ∪ 𝑏 ∈ 𝑏 ) ) ) |
| 11 | 5 10 | imbi12d | ⊢ ( 𝑎 = 𝑏 → ( ( 𝑎 ≠ ∅ → ( [⊊] Or 𝑎 → ∪ 𝑎 ∈ 𝑎 ) ) ↔ ( 𝑏 ≠ ∅ → ( [⊊] Or 𝑏 → ∪ 𝑏 ∈ 𝑏 ) ) ) ) |
| 12 | neeq1 | ⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑎 ≠ ∅ ↔ ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ ) ) | |
| 13 | soeq2 | ⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( [⊊] Or 𝑎 ↔ [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ) ) | |
| 14 | unieq | ⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ∪ 𝑎 = ∪ ( 𝑏 ∪ { 𝑐 } ) ) | |
| 15 | id | ⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → 𝑎 = ( 𝑏 ∪ { 𝑐 } ) ) | |
| 16 | 14 15 | eleq12d | ⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ∪ 𝑎 ∈ 𝑎 ↔ ∪ ( 𝑏 ∪ { 𝑐 } ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) |
| 17 | 13 16 | imbi12d | ⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( [⊊] Or 𝑎 → ∪ 𝑎 ∈ 𝑎 ) ↔ ( [⊊] Or ( 𝑏 ∪ { 𝑐 } ) → ∪ ( 𝑏 ∪ { 𝑐 } ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) ) |
| 18 | 12 17 | imbi12d | ⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( 𝑎 ≠ ∅ → ( [⊊] Or 𝑎 → ∪ 𝑎 ∈ 𝑎 ) ) ↔ ( ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ → ( [⊊] Or ( 𝑏 ∪ { 𝑐 } ) → ∪ ( 𝑏 ∪ { 𝑐 } ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) ) ) |
| 19 | neeq1 | ⊢ ( 𝑎 = 𝐴 → ( 𝑎 ≠ ∅ ↔ 𝐴 ≠ ∅ ) ) | |
| 20 | soeq2 | ⊢ ( 𝑎 = 𝐴 → ( [⊊] Or 𝑎 ↔ [⊊] Or 𝐴 ) ) | |
| 21 | unieq | ⊢ ( 𝑎 = 𝐴 → ∪ 𝑎 = ∪ 𝐴 ) | |
| 22 | id | ⊢ ( 𝑎 = 𝐴 → 𝑎 = 𝐴 ) | |
| 23 | 21 22 | eleq12d | ⊢ ( 𝑎 = 𝐴 → ( ∪ 𝑎 ∈ 𝑎 ↔ ∪ 𝐴 ∈ 𝐴 ) ) |
| 24 | 20 23 | imbi12d | ⊢ ( 𝑎 = 𝐴 → ( ( [⊊] Or 𝑎 → ∪ 𝑎 ∈ 𝑎 ) ↔ ( [⊊] Or 𝐴 → ∪ 𝐴 ∈ 𝐴 ) ) ) |
| 25 | 19 24 | imbi12d | ⊢ ( 𝑎 = 𝐴 → ( ( 𝑎 ≠ ∅ → ( [⊊] Or 𝑎 → ∪ 𝑎 ∈ 𝑎 ) ) ↔ ( 𝐴 ≠ ∅ → ( [⊊] Or 𝐴 → ∪ 𝐴 ∈ 𝐴 ) ) ) ) |
| 26 | unisnv | ⊢ ∪ { 𝑐 } = 𝑐 | |
| 27 | vsnid | ⊢ 𝑐 ∈ { 𝑐 } | |
| 28 | 26 27 | eqeltri | ⊢ ∪ { 𝑐 } ∈ { 𝑐 } |
| 29 | uneq1 | ⊢ ( 𝑏 = ∅ → ( 𝑏 ∪ { 𝑐 } ) = ( ∅ ∪ { 𝑐 } ) ) | |
| 30 | uncom | ⊢ ( ∅ ∪ { 𝑐 } ) = ( { 𝑐 } ∪ ∅ ) | |
| 31 | un0 | ⊢ ( { 𝑐 } ∪ ∅ ) = { 𝑐 } | |
| 32 | 30 31 | eqtri | ⊢ ( ∅ ∪ { 𝑐 } ) = { 𝑐 } |
| 33 | 29 32 | eqtrdi | ⊢ ( 𝑏 = ∅ → ( 𝑏 ∪ { 𝑐 } ) = { 𝑐 } ) |
| 34 | 33 | unieqd | ⊢ ( 𝑏 = ∅ → ∪ ( 𝑏 ∪ { 𝑐 } ) = ∪ { 𝑐 } ) |
| 35 | 34 33 | eleq12d | ⊢ ( 𝑏 = ∅ → ( ∪ ( 𝑏 ∪ { 𝑐 } ) ∈ ( 𝑏 ∪ { 𝑐 } ) ↔ ∪ { 𝑐 } ∈ { 𝑐 } ) ) |
| 36 | 28 35 | mpbiri | ⊢ ( 𝑏 = ∅ → ∪ ( 𝑏 ∪ { 𝑐 } ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) |
| 37 | 36 | a1d | ⊢ ( 𝑏 = ∅ → ( ( 𝑏 ≠ ∅ → ( [⊊] Or 𝑏 → ∪ 𝑏 ∈ 𝑏 ) ) → ∪ ( 𝑏 ∪ { 𝑐 } ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) |
| 38 | 37 | adantl | ⊢ ( ( ( 𝑏 ∈ Fin ∧ [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ ) ∧ 𝑏 = ∅ ) → ( ( 𝑏 ≠ ∅ → ( [⊊] Or 𝑏 → ∪ 𝑏 ∈ 𝑏 ) ) → ∪ ( 𝑏 ∪ { 𝑐 } ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) |
| 39 | simpr | ⊢ ( ( ( 𝑏 ∈ Fin ∧ [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ ) ∧ 𝑏 ≠ ∅ ) → 𝑏 ≠ ∅ ) | |
| 40 | ssun1 | ⊢ 𝑏 ⊆ ( 𝑏 ∪ { 𝑐 } ) | |
| 41 | simpl2 | ⊢ ( ( ( 𝑏 ∈ Fin ∧ [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ ) ∧ 𝑏 ≠ ∅ ) → [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ) | |
| 42 | soss | ⊢ ( 𝑏 ⊆ ( 𝑏 ∪ { 𝑐 } ) → ( [⊊] Or ( 𝑏 ∪ { 𝑐 } ) → [⊊] Or 𝑏 ) ) | |
| 43 | 40 41 42 | mpsyl | ⊢ ( ( ( 𝑏 ∈ Fin ∧ [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ ) ∧ 𝑏 ≠ ∅ ) → [⊊] Or 𝑏 ) |
| 44 | uniun | ⊢ ∪ ( 𝑏 ∪ { 𝑐 } ) = ( ∪ 𝑏 ∪ ∪ { 𝑐 } ) | |
| 45 | 26 | uneq2i | ⊢ ( ∪ 𝑏 ∪ ∪ { 𝑐 } ) = ( ∪ 𝑏 ∪ 𝑐 ) |
| 46 | 44 45 | eqtri | ⊢ ∪ ( 𝑏 ∪ { 𝑐 } ) = ( ∪ 𝑏 ∪ 𝑐 ) |
| 47 | simprr | ⊢ ( ( ( 𝑏 ∈ Fin ∧ [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ ) ∧ ( 𝑏 ≠ ∅ ∧ ∪ 𝑏 ∈ 𝑏 ) ) → ∪ 𝑏 ∈ 𝑏 ) | |
| 48 | simpl2 | ⊢ ( ( ( 𝑏 ∈ Fin ∧ [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ ) ∧ ( 𝑏 ≠ ∅ ∧ ∪ 𝑏 ∈ 𝑏 ) ) → [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ) | |
| 49 | elun1 | ⊢ ( ∪ 𝑏 ∈ 𝑏 → ∪ 𝑏 ∈ ( 𝑏 ∪ { 𝑐 } ) ) | |
| 50 | 49 | ad2antll | ⊢ ( ( ( 𝑏 ∈ Fin ∧ [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ ) ∧ ( 𝑏 ≠ ∅ ∧ ∪ 𝑏 ∈ 𝑏 ) ) → ∪ 𝑏 ∈ ( 𝑏 ∪ { 𝑐 } ) ) |
| 51 | ssun2 | ⊢ { 𝑐 } ⊆ ( 𝑏 ∪ { 𝑐 } ) | |
| 52 | 51 27 | sselii | ⊢ 𝑐 ∈ ( 𝑏 ∪ { 𝑐 } ) |
| 53 | 52 | a1i | ⊢ ( ( ( 𝑏 ∈ Fin ∧ [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ ) ∧ ( 𝑏 ≠ ∅ ∧ ∪ 𝑏 ∈ 𝑏 ) ) → 𝑐 ∈ ( 𝑏 ∪ { 𝑐 } ) ) |
| 54 | sorpssi | ⊢ ( ( [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ∧ ( ∪ 𝑏 ∈ ( 𝑏 ∪ { 𝑐 } ) ∧ 𝑐 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) → ( ∪ 𝑏 ⊆ 𝑐 ∨ 𝑐 ⊆ ∪ 𝑏 ) ) | |
| 55 | 48 50 53 54 | syl12anc | ⊢ ( ( ( 𝑏 ∈ Fin ∧ [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ ) ∧ ( 𝑏 ≠ ∅ ∧ ∪ 𝑏 ∈ 𝑏 ) ) → ( ∪ 𝑏 ⊆ 𝑐 ∨ 𝑐 ⊆ ∪ 𝑏 ) ) |
| 56 | ssequn1 | ⊢ ( ∪ 𝑏 ⊆ 𝑐 ↔ ( ∪ 𝑏 ∪ 𝑐 ) = 𝑐 ) | |
| 57 | 52 | a1i | ⊢ ( ∪ 𝑏 ∈ 𝑏 → 𝑐 ∈ ( 𝑏 ∪ { 𝑐 } ) ) |
| 58 | eleq1 | ⊢ ( ( ∪ 𝑏 ∪ 𝑐 ) = 𝑐 → ( ( ∪ 𝑏 ∪ 𝑐 ) ∈ ( 𝑏 ∪ { 𝑐 } ) ↔ 𝑐 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) | |
| 59 | 57 58 | imbitrrid | ⊢ ( ( ∪ 𝑏 ∪ 𝑐 ) = 𝑐 → ( ∪ 𝑏 ∈ 𝑏 → ( ∪ 𝑏 ∪ 𝑐 ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) |
| 60 | 56 59 | sylbi | ⊢ ( ∪ 𝑏 ⊆ 𝑐 → ( ∪ 𝑏 ∈ 𝑏 → ( ∪ 𝑏 ∪ 𝑐 ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) |
| 61 | 60 | impcom | ⊢ ( ( ∪ 𝑏 ∈ 𝑏 ∧ ∪ 𝑏 ⊆ 𝑐 ) → ( ∪ 𝑏 ∪ 𝑐 ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) |
| 62 | uncom | ⊢ ( ∪ 𝑏 ∪ 𝑐 ) = ( 𝑐 ∪ ∪ 𝑏 ) | |
| 63 | ssequn1 | ⊢ ( 𝑐 ⊆ ∪ 𝑏 ↔ ( 𝑐 ∪ ∪ 𝑏 ) = ∪ 𝑏 ) | |
| 64 | eleq1 | ⊢ ( ( 𝑐 ∪ ∪ 𝑏 ) = ∪ 𝑏 → ( ( 𝑐 ∪ ∪ 𝑏 ) ∈ ( 𝑏 ∪ { 𝑐 } ) ↔ ∪ 𝑏 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) | |
| 65 | 49 64 | imbitrrid | ⊢ ( ( 𝑐 ∪ ∪ 𝑏 ) = ∪ 𝑏 → ( ∪ 𝑏 ∈ 𝑏 → ( 𝑐 ∪ ∪ 𝑏 ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) |
| 66 | 63 65 | sylbi | ⊢ ( 𝑐 ⊆ ∪ 𝑏 → ( ∪ 𝑏 ∈ 𝑏 → ( 𝑐 ∪ ∪ 𝑏 ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) |
| 67 | 66 | impcom | ⊢ ( ( ∪ 𝑏 ∈ 𝑏 ∧ 𝑐 ⊆ ∪ 𝑏 ) → ( 𝑐 ∪ ∪ 𝑏 ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) |
| 68 | 62 67 | eqeltrid | ⊢ ( ( ∪ 𝑏 ∈ 𝑏 ∧ 𝑐 ⊆ ∪ 𝑏 ) → ( ∪ 𝑏 ∪ 𝑐 ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) |
| 69 | 61 68 | jaodan | ⊢ ( ( ∪ 𝑏 ∈ 𝑏 ∧ ( ∪ 𝑏 ⊆ 𝑐 ∨ 𝑐 ⊆ ∪ 𝑏 ) ) → ( ∪ 𝑏 ∪ 𝑐 ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) |
| 70 | 47 55 69 | syl2anc | ⊢ ( ( ( 𝑏 ∈ Fin ∧ [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ ) ∧ ( 𝑏 ≠ ∅ ∧ ∪ 𝑏 ∈ 𝑏 ) ) → ( ∪ 𝑏 ∪ 𝑐 ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) |
| 71 | 46 70 | eqeltrid | ⊢ ( ( ( 𝑏 ∈ Fin ∧ [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ ) ∧ ( 𝑏 ≠ ∅ ∧ ∪ 𝑏 ∈ 𝑏 ) ) → ∪ ( 𝑏 ∪ { 𝑐 } ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) |
| 72 | 71 | expr | ⊢ ( ( ( 𝑏 ∈ Fin ∧ [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ ) ∧ 𝑏 ≠ ∅ ) → ( ∪ 𝑏 ∈ 𝑏 → ∪ ( 𝑏 ∪ { 𝑐 } ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) |
| 73 | 43 72 | embantd | ⊢ ( ( ( 𝑏 ∈ Fin ∧ [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ ) ∧ 𝑏 ≠ ∅ ) → ( ( [⊊] Or 𝑏 → ∪ 𝑏 ∈ 𝑏 ) → ∪ ( 𝑏 ∪ { 𝑐 } ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) |
| 74 | 39 73 | embantd | ⊢ ( ( ( 𝑏 ∈ Fin ∧ [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ ) ∧ 𝑏 ≠ ∅ ) → ( ( 𝑏 ≠ ∅ → ( [⊊] Or 𝑏 → ∪ 𝑏 ∈ 𝑏 ) ) → ∪ ( 𝑏 ∪ { 𝑐 } ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) |
| 75 | 38 74 | pm2.61dane | ⊢ ( ( 𝑏 ∈ Fin ∧ [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ ) → ( ( 𝑏 ≠ ∅ → ( [⊊] Or 𝑏 → ∪ 𝑏 ∈ 𝑏 ) ) → ∪ ( 𝑏 ∪ { 𝑐 } ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) |
| 76 | 75 | 3exp | ⊢ ( 𝑏 ∈ Fin → ( [⊊] Or ( 𝑏 ∪ { 𝑐 } ) → ( ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ → ( ( 𝑏 ≠ ∅ → ( [⊊] Or 𝑏 → ∪ 𝑏 ∈ 𝑏 ) ) → ∪ ( 𝑏 ∪ { 𝑐 } ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) ) ) |
| 77 | 76 | com24 | ⊢ ( 𝑏 ∈ Fin → ( ( 𝑏 ≠ ∅ → ( [⊊] Or 𝑏 → ∪ 𝑏 ∈ 𝑏 ) ) → ( ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ → ( [⊊] Or ( 𝑏 ∪ { 𝑐 } ) → ∪ ( 𝑏 ∪ { 𝑐 } ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) ) ) |
| 78 | 4 11 18 25 2 77 | findcard2 | ⊢ ( 𝐴 ∈ Fin → ( 𝐴 ≠ ∅ → ( [⊊] Or 𝐴 → ∪ 𝐴 ∈ 𝐴 ) ) ) |
| 79 | 78 | 3imp21 | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ∧ [⊊] Or 𝐴 ) → ∪ 𝐴 ∈ 𝐴 ) |