This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a chain of finite sets, dominance and subset coincide. (Contributed by Stefan O'Rear, 8-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fincssdom | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) → ( 𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) ∧ ¬ 𝐴 ⊆ 𝐵 ) → 𝐴 ∈ Fin ) | |
| 2 | simpr | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) ∧ ¬ 𝐴 ⊆ 𝐵 ) → ¬ 𝐴 ⊆ 𝐵 ) | |
| 3 | simpl3 | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) ∧ ¬ 𝐴 ⊆ 𝐵 ) → ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) | |
| 4 | orel1 | ⊢ ( ¬ 𝐴 ⊆ 𝐵 → ( ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) → 𝐵 ⊆ 𝐴 ) ) | |
| 5 | 2 3 4 | sylc | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) ∧ ¬ 𝐴 ⊆ 𝐵 ) → 𝐵 ⊆ 𝐴 ) |
| 6 | dfpss3 | ⊢ ( 𝐵 ⊊ 𝐴 ↔ ( 𝐵 ⊆ 𝐴 ∧ ¬ 𝐴 ⊆ 𝐵 ) ) | |
| 7 | 5 2 6 | sylanbrc | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) ∧ ¬ 𝐴 ⊆ 𝐵 ) → 𝐵 ⊊ 𝐴 ) |
| 8 | php3 | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴 ) → 𝐵 ≺ 𝐴 ) | |
| 9 | 1 7 8 | syl2anc | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) ∧ ¬ 𝐴 ⊆ 𝐵 ) → 𝐵 ≺ 𝐴 ) |
| 10 | 9 | ex | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) → ( ¬ 𝐴 ⊆ 𝐵 → 𝐵 ≺ 𝐴 ) ) |
| 11 | domnsym | ⊢ ( 𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴 ) | |
| 12 | 11 | con2i | ⊢ ( 𝐵 ≺ 𝐴 → ¬ 𝐴 ≼ 𝐵 ) |
| 13 | 10 12 | syl6 | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) → ( ¬ 𝐴 ⊆ 𝐵 → ¬ 𝐴 ≼ 𝐵 ) ) |
| 14 | 13 | con4d | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) → ( 𝐴 ≼ 𝐵 → 𝐴 ⊆ 𝐵 ) ) |
| 15 | ssdomg | ⊢ ( 𝐵 ∈ Fin → ( 𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵 ) ) | |
| 16 | 15 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) → ( 𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵 ) ) |
| 17 | 14 16 | impbid | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) → ( 𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵 ) ) |