This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sequence of powers of a complex number A with absolute value less than 1 converges to zero. (Contributed by NM, 8-May-2006) (Proof shortened by Mario Carneiro, 26-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | expcnv.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| expcnv.2 | ⊢ ( 𝜑 → ( abs ‘ 𝐴 ) < 1 ) | ||
| Assertion | expcnv | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ⇝ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expcnv.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | expcnv.2 | ⊢ ( 𝜑 → ( abs ‘ 𝐴 ) < 1 ) | |
| 3 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 4 | 1zzd | ⊢ ( ( 𝜑 ∧ 𝐴 = 0 ) → 1 ∈ ℤ ) | |
| 5 | nn0ex | ⊢ ℕ0 ∈ V | |
| 6 | 5 | mptex | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ∈ V |
| 7 | 6 | a1i | ⊢ ( ( 𝜑 ∧ 𝐴 = 0 ) → ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ∈ V ) |
| 8 | 0cnd | ⊢ ( ( 𝜑 ∧ 𝐴 = 0 ) → 0 ∈ ℂ ) | |
| 9 | nnnn0 | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) | |
| 10 | oveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝐴 ↑ 𝑛 ) = ( 𝐴 ↑ 𝑘 ) ) | |
| 11 | eqid | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) | |
| 12 | ovex | ⊢ ( 𝐴 ↑ 𝑘 ) ∈ V | |
| 13 | 10 11 12 | fvmpt | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 ) = ( 𝐴 ↑ 𝑘 ) ) |
| 14 | 9 13 | syl | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 ) = ( 𝐴 ↑ 𝑘 ) ) |
| 15 | simpr | ⊢ ( ( 𝜑 ∧ 𝐴 = 0 ) → 𝐴 = 0 ) | |
| 16 | 15 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝐴 = 0 ) → ( 𝐴 ↑ 𝑘 ) = ( 0 ↑ 𝑘 ) ) |
| 17 | 14 16 | sylan9eqr | ⊢ ( ( ( 𝜑 ∧ 𝐴 = 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 ) = ( 0 ↑ 𝑘 ) ) |
| 18 | 0exp | ⊢ ( 𝑘 ∈ ℕ → ( 0 ↑ 𝑘 ) = 0 ) | |
| 19 | 18 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝐴 = 0 ) ∧ 𝑘 ∈ ℕ ) → ( 0 ↑ 𝑘 ) = 0 ) |
| 20 | 17 19 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝐴 = 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 ) = 0 ) |
| 21 | 3 4 7 8 20 | climconst | ⊢ ( ( 𝜑 ∧ 𝐴 = 0 ) → ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ⇝ 0 ) |
| 22 | 1zzd | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → 1 ∈ ℤ ) | |
| 23 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) < 1 ) |
| 24 | absrpcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℝ+ ) | |
| 25 | 1 24 | sylan | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℝ+ ) |
| 26 | 25 | reclt1d | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ 𝐴 ) < 1 ↔ 1 < ( 1 / ( abs ‘ 𝐴 ) ) ) ) |
| 27 | 23 26 | mpbid | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → 1 < ( 1 / ( abs ‘ 𝐴 ) ) ) |
| 28 | 1re | ⊢ 1 ∈ ℝ | |
| 29 | 25 | rpreccld | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( 1 / ( abs ‘ 𝐴 ) ) ∈ ℝ+ ) |
| 30 | 29 | rpred | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( 1 / ( abs ‘ 𝐴 ) ) ∈ ℝ ) |
| 31 | difrp | ⊢ ( ( 1 ∈ ℝ ∧ ( 1 / ( abs ‘ 𝐴 ) ) ∈ ℝ ) → ( 1 < ( 1 / ( abs ‘ 𝐴 ) ) ↔ ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ∈ ℝ+ ) ) | |
| 32 | 28 30 31 | sylancr | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( 1 < ( 1 / ( abs ‘ 𝐴 ) ) ↔ ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ∈ ℝ+ ) ) |
| 33 | 27 32 | mpbid | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ∈ ℝ+ ) |
| 34 | 33 | rpreccld | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) ∈ ℝ+ ) |
| 35 | 34 | rpcnd | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) ∈ ℂ ) |
| 36 | divcnv | ⊢ ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) ∈ ℂ → ( 𝑛 ∈ ℕ ↦ ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑛 ) ) ⇝ 0 ) | |
| 37 | 35 36 | syl | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( 𝑛 ∈ ℕ ↦ ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑛 ) ) ⇝ 0 ) |
| 38 | nnex | ⊢ ℕ ∈ V | |
| 39 | 38 | mptex | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ∈ V |
| 40 | 39 | a1i | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ∈ V ) |
| 41 | oveq2 | ⊢ ( 𝑛 = 𝑘 → ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑛 ) = ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑘 ) ) | |
| 42 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑛 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑛 ) ) | |
| 43 | ovex | ⊢ ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑘 ) ∈ V | |
| 44 | 41 42 43 | fvmpt | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑛 ) ) ‘ 𝑘 ) = ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑘 ) ) |
| 45 | 44 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑛 ) ) ‘ 𝑘 ) = ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑘 ) ) |
| 46 | 34 | rpred | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) ∈ ℝ ) |
| 47 | nndivre | ⊢ ( ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑘 ) ∈ ℝ ) | |
| 48 | 46 47 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑘 ) ∈ ℝ ) |
| 49 | 45 48 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑛 ) ) ‘ 𝑘 ) ∈ ℝ ) |
| 50 | oveq2 | ⊢ ( 𝑛 = 𝑘 → ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) = ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) | |
| 51 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) | |
| 52 | ovex | ⊢ ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ∈ V | |
| 53 | 50 51 52 | fvmpt | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) = ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) |
| 54 | 53 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) = ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) |
| 55 | nnz | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℤ ) | |
| 56 | rpexpcl | ⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℝ+ ∧ 𝑘 ∈ ℤ ) → ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ∈ ℝ+ ) | |
| 57 | 25 55 56 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ∈ ℝ+ ) |
| 58 | 54 57 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) ∈ ℝ+ ) |
| 59 | 58 | rpred | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) ∈ ℝ ) |
| 60 | nnrp | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ+ ) | |
| 61 | rpmulcl | ⊢ ( ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ∈ ℝ+ ∧ 𝑘 ∈ ℝ+ ) → ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) · 𝑘 ) ∈ ℝ+ ) | |
| 62 | 33 60 61 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) · 𝑘 ) ∈ ℝ+ ) |
| 63 | 62 | rpred | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) · 𝑘 ) ∈ ℝ ) |
| 64 | peano2re | ⊢ ( ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) · 𝑘 ) ∈ ℝ → ( ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) · 𝑘 ) + 1 ) ∈ ℝ ) | |
| 65 | 63 64 | syl | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) · 𝑘 ) + 1 ) ∈ ℝ ) |
| 66 | rpexpcl | ⊢ ( ( ( 1 / ( abs ‘ 𝐴 ) ) ∈ ℝ+ ∧ 𝑘 ∈ ℤ ) → ( ( 1 / ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) ∈ ℝ+ ) | |
| 67 | 29 55 66 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( 1 / ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) ∈ ℝ+ ) |
| 68 | 67 | rpred | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( 1 / ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) ∈ ℝ ) |
| 69 | 63 | lep1d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) · 𝑘 ) ≤ ( ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) · 𝑘 ) + 1 ) ) |
| 70 | 30 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( 1 / ( abs ‘ 𝐴 ) ) ∈ ℝ ) |
| 71 | 9 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ0 ) |
| 72 | 29 | rpge0d | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → 0 ≤ ( 1 / ( abs ‘ 𝐴 ) ) ) |
| 73 | 72 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( 1 / ( abs ‘ 𝐴 ) ) ) |
| 74 | bernneq2 | ⊢ ( ( ( 1 / ( abs ‘ 𝐴 ) ) ∈ ℝ ∧ 𝑘 ∈ ℕ0 ∧ 0 ≤ ( 1 / ( abs ‘ 𝐴 ) ) ) → ( ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) · 𝑘 ) + 1 ) ≤ ( ( 1 / ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) ) | |
| 75 | 70 71 73 74 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) · 𝑘 ) + 1 ) ≤ ( ( 1 / ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) ) |
| 76 | 63 65 68 69 75 | letrd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) · 𝑘 ) ≤ ( ( 1 / ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) ) |
| 77 | 25 | rpcnne0d | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ 𝐴 ) ∈ ℂ ∧ ( abs ‘ 𝐴 ) ≠ 0 ) ) |
| 78 | exprec | ⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℂ ∧ ( abs ‘ 𝐴 ) ≠ 0 ∧ 𝑘 ∈ ℤ ) → ( ( 1 / ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) = ( 1 / ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) ) | |
| 79 | 78 | 3expa | ⊢ ( ( ( ( abs ‘ 𝐴 ) ∈ ℂ ∧ ( abs ‘ 𝐴 ) ≠ 0 ) ∧ 𝑘 ∈ ℤ ) → ( ( 1 / ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) = ( 1 / ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) ) |
| 80 | 77 55 79 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( 1 / ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) = ( 1 / ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) ) |
| 81 | 76 80 | breqtrd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) · 𝑘 ) ≤ ( 1 / ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) ) |
| 82 | 62 57 81 | lerec2d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ≤ ( 1 / ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) · 𝑘 ) ) ) |
| 83 | 33 | rpcnne0d | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ∈ ℂ ∧ ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ≠ 0 ) ) |
| 84 | nncn | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) | |
| 85 | nnne0 | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ≠ 0 ) | |
| 86 | 84 85 | jca | ⊢ ( 𝑘 ∈ ℕ → ( 𝑘 ∈ ℂ ∧ 𝑘 ≠ 0 ) ) |
| 87 | recdiv2 | ⊢ ( ( ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ∈ ℂ ∧ ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ≠ 0 ) ∧ ( 𝑘 ∈ ℂ ∧ 𝑘 ≠ 0 ) ) → ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑘 ) = ( 1 / ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) · 𝑘 ) ) ) | |
| 88 | 83 86 87 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑘 ) = ( 1 / ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) · 𝑘 ) ) ) |
| 89 | 82 88 | breqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ≤ ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑘 ) ) |
| 90 | 89 54 45 | 3brtr4d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑛 ) ) ‘ 𝑘 ) ) |
| 91 | 58 | rpge0d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) ) |
| 92 | 3 22 37 40 49 59 90 91 | climsqz2 | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ⇝ 0 ) |
| 93 | 1zzd | ⊢ ( 𝜑 → 1 ∈ ℤ ) | |
| 94 | 6 | a1i | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ∈ V ) |
| 95 | 39 | a1i | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ∈ V ) |
| 96 | 9 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ0 ) |
| 97 | 96 13 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 ) = ( 𝐴 ↑ 𝑘 ) ) |
| 98 | expcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) | |
| 99 | 1 9 98 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
| 100 | 97 99 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 101 | absexp | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( abs ‘ ( 𝐴 ↑ 𝑘 ) ) = ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) | |
| 102 | 1 9 101 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( abs ‘ ( 𝐴 ↑ 𝑘 ) ) = ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) |
| 103 | 97 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( abs ‘ ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 ) ) = ( abs ‘ ( 𝐴 ↑ 𝑘 ) ) ) |
| 104 | 53 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) = ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) |
| 105 | 102 103 104 | 3eqtr4rd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) = ( abs ‘ ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 ) ) ) |
| 106 | 3 93 94 95 100 105 | climabs0 | ⊢ ( 𝜑 → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ⇝ 0 ↔ ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ⇝ 0 ) ) |
| 107 | 106 | biimpar | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ⇝ 0 ) → ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ⇝ 0 ) |
| 108 | 92 107 | syldan | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ⇝ 0 ) |
| 109 | 21 108 | pm2.61dane | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ⇝ 0 ) |