This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An (eventually) constant sequence converges to its value. (Contributed by NM, 28-Aug-2005) (Revised by Mario Carneiro, 31-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climconst.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| climconst.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| climconst.3 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | ||
| climconst.4 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | ||
| climconst.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) | ||
| Assertion | climconst | ⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climconst.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | climconst.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | climconst.3 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | |
| 4 | climconst.4 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 5 | climconst.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) | |
| 6 | uzid | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 7 | 2 6 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 8 | 7 1 | eleqtrrdi | ⊢ ( 𝜑 → 𝑀 ∈ 𝑍 ) |
| 9 | 4 | subidd | ⊢ ( 𝜑 → ( 𝐴 − 𝐴 ) = 0 ) |
| 10 | 9 | fveq2d | ⊢ ( 𝜑 → ( abs ‘ ( 𝐴 − 𝐴 ) ) = ( abs ‘ 0 ) ) |
| 11 | abs0 | ⊢ ( abs ‘ 0 ) = 0 | |
| 12 | 10 11 | eqtrdi | ⊢ ( 𝜑 → ( abs ‘ ( 𝐴 − 𝐴 ) ) = 0 ) |
| 13 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( abs ‘ ( 𝐴 − 𝐴 ) ) = 0 ) |
| 14 | rpgt0 | ⊢ ( 𝑥 ∈ ℝ+ → 0 < 𝑥 ) | |
| 15 | 14 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 0 < 𝑥 ) |
| 16 | 13 15 | eqbrtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( abs ‘ ( 𝐴 − 𝐴 ) ) < 𝑥 ) |
| 17 | 16 | ralrimivw | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐴 − 𝐴 ) ) < 𝑥 ) |
| 18 | fveq2 | ⊢ ( 𝑗 = 𝑀 → ( ℤ≥ ‘ 𝑗 ) = ( ℤ≥ ‘ 𝑀 ) ) | |
| 19 | 18 1 | eqtr4di | ⊢ ( 𝑗 = 𝑀 → ( ℤ≥ ‘ 𝑗 ) = 𝑍 ) |
| 20 | 19 | raleqdv | ⊢ ( 𝑗 = 𝑀 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐴 − 𝐴 ) ) < 𝑥 ↔ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐴 − 𝐴 ) ) < 𝑥 ) ) |
| 21 | 20 | rspcev | ⊢ ( ( 𝑀 ∈ 𝑍 ∧ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐴 − 𝐴 ) ) < 𝑥 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐴 − 𝐴 ) ) < 𝑥 ) |
| 22 | 8 17 21 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐴 − 𝐴 ) ) < 𝑥 ) |
| 23 | 22 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐴 − 𝐴 ) ) < 𝑥 ) |
| 24 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) |
| 25 | 1 2 3 5 4 24 | clim2c | ⊢ ( 𝜑 → ( 𝐹 ⇝ 𝐴 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐴 − 𝐴 ) ) < 𝑥 ) ) |
| 26 | 23 25 | mpbird | ⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) |