This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sequence of terms converges to zero when it is less than powers of a number A whose absolute value is less than 1. (Contributed by NM, 19-Jul-2008) (Revised by Mario Carneiro, 26-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | explecnv.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| explecnv.2 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | ||
| explecnv.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| explecnv.5 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | ||
| explecnv.4 | ⊢ ( 𝜑 → ( abs ‘ 𝐴 ) < 1 ) | ||
| explecnv.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | ||
| explecnv.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ ( 𝐴 ↑ 𝑘 ) ) | ||
| Assertion | explecnv | ⊢ ( 𝜑 → 𝐹 ⇝ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | explecnv.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | explecnv.2 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | |
| 3 | explecnv.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 4 | explecnv.5 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 5 | explecnv.4 | ⊢ ( 𝜑 → ( abs ‘ 𝐴 ) < 1 ) | |
| 6 | explecnv.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | |
| 7 | explecnv.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ ( 𝐴 ↑ 𝑘 ) ) | |
| 8 | eqid | ⊢ ( ℤ≥ ‘ if ( 𝑀 ≤ 0 , 0 , 𝑀 ) ) = ( ℤ≥ ‘ if ( 𝑀 ≤ 0 , 0 , 𝑀 ) ) | |
| 9 | 0z | ⊢ 0 ∈ ℤ | |
| 10 | ifcl | ⊢ ( ( 0 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → if ( 𝑀 ≤ 0 , 0 , 𝑀 ) ∈ ℤ ) | |
| 11 | 9 3 10 | sylancr | ⊢ ( 𝜑 → if ( 𝑀 ≤ 0 , 0 , 𝑀 ) ∈ ℤ ) |
| 12 | 4 | recnd | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 13 | 12 5 | expcnv | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ⇝ 0 ) |
| 14 | 1 | fvexi | ⊢ 𝑍 ∈ V |
| 15 | 14 | mptex | ⊢ ( 𝑛 ∈ 𝑍 ↦ ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) ) ∈ V |
| 16 | 15 | a1i | ⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 ↦ ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) ) ∈ V ) |
| 17 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 18 | 1 17 | ineq12i | ⊢ ( 𝑍 ∩ ℕ0 ) = ( ( ℤ≥ ‘ 𝑀 ) ∩ ( ℤ≥ ‘ 0 ) ) |
| 19 | uzin | ⊢ ( ( 𝑀 ∈ ℤ ∧ 0 ∈ ℤ ) → ( ( ℤ≥ ‘ 𝑀 ) ∩ ( ℤ≥ ‘ 0 ) ) = ( ℤ≥ ‘ if ( 𝑀 ≤ 0 , 0 , 𝑀 ) ) ) | |
| 20 | 3 9 19 | sylancl | ⊢ ( 𝜑 → ( ( ℤ≥ ‘ 𝑀 ) ∩ ( ℤ≥ ‘ 0 ) ) = ( ℤ≥ ‘ if ( 𝑀 ≤ 0 , 0 , 𝑀 ) ) ) |
| 21 | 18 20 | eqtr2id | ⊢ ( 𝜑 → ( ℤ≥ ‘ if ( 𝑀 ≤ 0 , 0 , 𝑀 ) ) = ( 𝑍 ∩ ℕ0 ) ) |
| 22 | 21 | eleq2d | ⊢ ( 𝜑 → ( 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 0 , 0 , 𝑀 ) ) ↔ 𝑘 ∈ ( 𝑍 ∩ ℕ0 ) ) ) |
| 23 | 22 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 0 , 0 , 𝑀 ) ) ) → 𝑘 ∈ ( 𝑍 ∩ ℕ0 ) ) |
| 24 | 23 | elin2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 0 , 0 , 𝑀 ) ) ) → 𝑘 ∈ ℕ0 ) |
| 25 | oveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝐴 ↑ 𝑛 ) = ( 𝐴 ↑ 𝑘 ) ) | |
| 26 | eqid | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) | |
| 27 | ovex | ⊢ ( 𝐴 ↑ 𝑘 ) ∈ V | |
| 28 | 25 26 27 | fvmpt | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 ) = ( 𝐴 ↑ 𝑘 ) ) |
| 29 | 24 28 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 0 , 0 , 𝑀 ) ) ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 ) = ( 𝐴 ↑ 𝑘 ) ) |
| 30 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 0 , 0 , 𝑀 ) ) ) → 𝐴 ∈ ℝ ) |
| 31 | 30 24 | reexpcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 0 , 0 , 𝑀 ) ) ) → ( 𝐴 ↑ 𝑘 ) ∈ ℝ ) |
| 32 | 29 31 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 0 , 0 , 𝑀 ) ) ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 ) ∈ ℝ ) |
| 33 | 23 | elin1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 0 , 0 , 𝑀 ) ) ) → 𝑘 ∈ 𝑍 ) |
| 34 | 2fveq3 | ⊢ ( 𝑛 = 𝑘 → ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) = ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) | |
| 35 | eqid | ⊢ ( 𝑛 ∈ 𝑍 ↦ ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ 𝑍 ↦ ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) ) | |
| 36 | fvex | ⊢ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ V | |
| 37 | 34 35 36 | fvmpt | ⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝑛 ∈ 𝑍 ↦ ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) = ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 38 | 33 37 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 0 , 0 , 𝑀 ) ) ) → ( ( 𝑛 ∈ 𝑍 ↦ ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) = ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 39 | 33 6 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 0 , 0 , 𝑀 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 40 | 39 | abscld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 0 , 0 , 𝑀 ) ) ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
| 41 | 38 40 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 0 , 0 , 𝑀 ) ) ) → ( ( 𝑛 ∈ 𝑍 ↦ ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) ∈ ℝ ) |
| 42 | 33 7 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 0 , 0 , 𝑀 ) ) ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ ( 𝐴 ↑ 𝑘 ) ) |
| 43 | 42 38 29 | 3brtr4d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 0 , 0 , 𝑀 ) ) ) → ( ( 𝑛 ∈ 𝑍 ↦ ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) ≤ ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 ) ) |
| 44 | 39 | absge0d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 0 , 0 , 𝑀 ) ) ) → 0 ≤ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 45 | 44 38 | breqtrrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 0 , 0 , 𝑀 ) ) ) → 0 ≤ ( ( 𝑛 ∈ 𝑍 ↦ ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) |
| 46 | 8 11 13 16 32 41 43 45 | climsqz2 | ⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 ↦ ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) ) ⇝ 0 ) |
| 47 | 37 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑛 ∈ 𝑍 ↦ ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) = ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 48 | 1 3 2 16 6 47 | climabs0 | ⊢ ( 𝜑 → ( 𝐹 ⇝ 0 ↔ ( 𝑛 ∈ 𝑍 ↦ ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) ) ⇝ 0 ) ) |
| 49 | 46 48 | mpbird | ⊢ ( 𝜑 → 𝐹 ⇝ 0 ) |