This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Division into a reciprocal. (Contributed by NM, 19-Oct-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | recdiv2 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 1 / 𝐴 ) / 𝐵 ) = ( 1 / ( 𝐴 · 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 2 | divdiv1 | ⊢ ( ( 1 ∈ ℂ ∧ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 1 / 𝐴 ) / 𝐵 ) = ( 1 / ( 𝐴 · 𝐵 ) ) ) | |
| 3 | 1 2 | mp3an1 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 1 / 𝐴 ) / 𝐵 ) = ( 1 / ( 𝐴 · 𝐵 ) ) ) |