This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Integer exponentiation of a reciprocal. (Contributed by NM, 2-Aug-2006) (Revised by Mario Carneiro, 4-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | exprec | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( ( 1 / 𝐴 ) ↑ 𝑁 ) = ( 1 / ( 𝐴 ↑ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expclz | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝐴 ↑ 𝑁 ) ∈ ℂ ) | |
| 2 | reccl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 1 / 𝐴 ) ∈ ℂ ) | |
| 3 | 2 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 1 / 𝐴 ) ∈ ℂ ) |
| 4 | recne0 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 1 / 𝐴 ) ≠ 0 ) | |
| 5 | 4 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 1 / 𝐴 ) ≠ 0 ) |
| 6 | simp3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℤ ) | |
| 7 | expclz | ⊢ ( ( ( 1 / 𝐴 ) ∈ ℂ ∧ ( 1 / 𝐴 ) ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( ( 1 / 𝐴 ) ↑ 𝑁 ) ∈ ℂ ) | |
| 8 | 3 5 6 7 | syl3anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( ( 1 / 𝐴 ) ↑ 𝑁 ) ∈ ℂ ) |
| 9 | expne0i | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝐴 ↑ 𝑁 ) ≠ 0 ) | |
| 10 | simp1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → 𝐴 ∈ ℂ ) | |
| 11 | simp2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → 𝐴 ≠ 0 ) | |
| 12 | 10 11 | recidd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝐴 · ( 1 / 𝐴 ) ) = 1 ) |
| 13 | 12 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( ( 𝐴 · ( 1 / 𝐴 ) ) ↑ 𝑁 ) = ( 1 ↑ 𝑁 ) ) |
| 14 | mulexpz | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ( 1 / 𝐴 ) ∈ ℂ ∧ ( 1 / 𝐴 ) ≠ 0 ) ∧ 𝑁 ∈ ℤ ) → ( ( 𝐴 · ( 1 / 𝐴 ) ) ↑ 𝑁 ) = ( ( 𝐴 ↑ 𝑁 ) · ( ( 1 / 𝐴 ) ↑ 𝑁 ) ) ) | |
| 15 | 10 11 3 5 6 14 | syl221anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( ( 𝐴 · ( 1 / 𝐴 ) ) ↑ 𝑁 ) = ( ( 𝐴 ↑ 𝑁 ) · ( ( 1 / 𝐴 ) ↑ 𝑁 ) ) ) |
| 16 | 1exp | ⊢ ( 𝑁 ∈ ℤ → ( 1 ↑ 𝑁 ) = 1 ) | |
| 17 | 6 16 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 1 ↑ 𝑁 ) = 1 ) |
| 18 | 13 15 17 | 3eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( ( 𝐴 ↑ 𝑁 ) · ( ( 1 / 𝐴 ) ↑ 𝑁 ) ) = 1 ) |
| 19 | 1 8 9 18 | mvllmuld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( ( 1 / 𝐴 ) ↑ 𝑁 ) = ( 1 / ( 𝐴 ↑ 𝑁 ) ) ) |