This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convergence to zero of the absolute value is equivalent to convergence to zero. (Contributed by NM, 8-Jul-2008) (Revised by Mario Carneiro, 31-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climabs0.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| climabs0.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| climabs0.3 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | ||
| climabs0.4 | ⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) | ||
| climabs0.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | ||
| climabs0.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) | ||
| Assertion | climabs0 | ⊢ ( 𝜑 → ( 𝐹 ⇝ 0 ↔ 𝐺 ⇝ 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climabs0.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | climabs0.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | climabs0.3 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | |
| 4 | climabs0.4 | ⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) | |
| 5 | climabs0.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | |
| 6 | climabs0.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) | |
| 7 | 1 | uztrn2 | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
| 8 | absidm | ⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ → ( abs ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) = ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) | |
| 9 | 5 8 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( abs ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) = ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 10 | 9 | breq1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( abs ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) < 𝑥 ↔ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) |
| 11 | 7 10 | sylan2 | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( abs ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) < 𝑥 ↔ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) |
| 12 | 11 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( abs ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) < 𝑥 ↔ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) |
| 13 | 12 | ralbidva | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) < 𝑥 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) |
| 14 | 13 | rexbidva | ⊢ ( 𝜑 → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) < 𝑥 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) |
| 15 | 14 | ralbidv | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) < 𝑥 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) |
| 16 | 5 | abscld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
| 17 | 16 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℂ ) |
| 18 | 1 2 4 6 17 | clim0c | ⊢ ( 𝜑 → ( 𝐺 ⇝ 0 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) < 𝑥 ) ) |
| 19 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 20 | 1 2 3 19 5 | clim0c | ⊢ ( 𝜑 → ( 𝐹 ⇝ 0 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) |
| 21 | 15 18 20 | 3bitr4rd | ⊢ ( 𝜑 → ( 𝐹 ⇝ 0 ↔ 𝐺 ⇝ 0 ) ) |