This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sequence of powers of a complex number A with absolute value less than 1 converges to zero. (Contributed by NM, 8-May-2006) (Proof shortened by Mario Carneiro, 26-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | expcnv.1 | |- ( ph -> A e. CC ) |
|
| expcnv.2 | |- ( ph -> ( abs ` A ) < 1 ) |
||
| Assertion | expcnv | |- ( ph -> ( n e. NN0 |-> ( A ^ n ) ) ~~> 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expcnv.1 | |- ( ph -> A e. CC ) |
|
| 2 | expcnv.2 | |- ( ph -> ( abs ` A ) < 1 ) |
|
| 3 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 4 | 1zzd | |- ( ( ph /\ A = 0 ) -> 1 e. ZZ ) |
|
| 5 | nn0ex | |- NN0 e. _V |
|
| 6 | 5 | mptex | |- ( n e. NN0 |-> ( A ^ n ) ) e. _V |
| 7 | 6 | a1i | |- ( ( ph /\ A = 0 ) -> ( n e. NN0 |-> ( A ^ n ) ) e. _V ) |
| 8 | 0cnd | |- ( ( ph /\ A = 0 ) -> 0 e. CC ) |
|
| 9 | nnnn0 | |- ( k e. NN -> k e. NN0 ) |
|
| 10 | oveq2 | |- ( n = k -> ( A ^ n ) = ( A ^ k ) ) |
|
| 11 | eqid | |- ( n e. NN0 |-> ( A ^ n ) ) = ( n e. NN0 |-> ( A ^ n ) ) |
|
| 12 | ovex | |- ( A ^ k ) e. _V |
|
| 13 | 10 11 12 | fvmpt | |- ( k e. NN0 -> ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) = ( A ^ k ) ) |
| 14 | 9 13 | syl | |- ( k e. NN -> ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) = ( A ^ k ) ) |
| 15 | simpr | |- ( ( ph /\ A = 0 ) -> A = 0 ) |
|
| 16 | 15 | oveq1d | |- ( ( ph /\ A = 0 ) -> ( A ^ k ) = ( 0 ^ k ) ) |
| 17 | 14 16 | sylan9eqr | |- ( ( ( ph /\ A = 0 ) /\ k e. NN ) -> ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) = ( 0 ^ k ) ) |
| 18 | 0exp | |- ( k e. NN -> ( 0 ^ k ) = 0 ) |
|
| 19 | 18 | adantl | |- ( ( ( ph /\ A = 0 ) /\ k e. NN ) -> ( 0 ^ k ) = 0 ) |
| 20 | 17 19 | eqtrd | |- ( ( ( ph /\ A = 0 ) /\ k e. NN ) -> ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) = 0 ) |
| 21 | 3 4 7 8 20 | climconst | |- ( ( ph /\ A = 0 ) -> ( n e. NN0 |-> ( A ^ n ) ) ~~> 0 ) |
| 22 | 1zzd | |- ( ( ph /\ A =/= 0 ) -> 1 e. ZZ ) |
|
| 23 | 2 | adantr | |- ( ( ph /\ A =/= 0 ) -> ( abs ` A ) < 1 ) |
| 24 | absrpcl | |- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) e. RR+ ) |
|
| 25 | 1 24 | sylan | |- ( ( ph /\ A =/= 0 ) -> ( abs ` A ) e. RR+ ) |
| 26 | 25 | reclt1d | |- ( ( ph /\ A =/= 0 ) -> ( ( abs ` A ) < 1 <-> 1 < ( 1 / ( abs ` A ) ) ) ) |
| 27 | 23 26 | mpbid | |- ( ( ph /\ A =/= 0 ) -> 1 < ( 1 / ( abs ` A ) ) ) |
| 28 | 1re | |- 1 e. RR |
|
| 29 | 25 | rpreccld | |- ( ( ph /\ A =/= 0 ) -> ( 1 / ( abs ` A ) ) e. RR+ ) |
| 30 | 29 | rpred | |- ( ( ph /\ A =/= 0 ) -> ( 1 / ( abs ` A ) ) e. RR ) |
| 31 | difrp | |- ( ( 1 e. RR /\ ( 1 / ( abs ` A ) ) e. RR ) -> ( 1 < ( 1 / ( abs ` A ) ) <-> ( ( 1 / ( abs ` A ) ) - 1 ) e. RR+ ) ) |
|
| 32 | 28 30 31 | sylancr | |- ( ( ph /\ A =/= 0 ) -> ( 1 < ( 1 / ( abs ` A ) ) <-> ( ( 1 / ( abs ` A ) ) - 1 ) e. RR+ ) ) |
| 33 | 27 32 | mpbid | |- ( ( ph /\ A =/= 0 ) -> ( ( 1 / ( abs ` A ) ) - 1 ) e. RR+ ) |
| 34 | 33 | rpreccld | |- ( ( ph /\ A =/= 0 ) -> ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) e. RR+ ) |
| 35 | 34 | rpcnd | |- ( ( ph /\ A =/= 0 ) -> ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) e. CC ) |
| 36 | divcnv | |- ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) e. CC -> ( n e. NN |-> ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / n ) ) ~~> 0 ) |
|
| 37 | 35 36 | syl | |- ( ( ph /\ A =/= 0 ) -> ( n e. NN |-> ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / n ) ) ~~> 0 ) |
| 38 | nnex | |- NN e. _V |
|
| 39 | 38 | mptex | |- ( n e. NN |-> ( ( abs ` A ) ^ n ) ) e. _V |
| 40 | 39 | a1i | |- ( ( ph /\ A =/= 0 ) -> ( n e. NN |-> ( ( abs ` A ) ^ n ) ) e. _V ) |
| 41 | oveq2 | |- ( n = k -> ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / n ) = ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / k ) ) |
|
| 42 | eqid | |- ( n e. NN |-> ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / n ) ) = ( n e. NN |-> ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / n ) ) |
|
| 43 | ovex | |- ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / k ) e. _V |
|
| 44 | 41 42 43 | fvmpt | |- ( k e. NN -> ( ( n e. NN |-> ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / n ) ) ` k ) = ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / k ) ) |
| 45 | 44 | adantl | |- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( n e. NN |-> ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / n ) ) ` k ) = ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / k ) ) |
| 46 | 34 | rpred | |- ( ( ph /\ A =/= 0 ) -> ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) e. RR ) |
| 47 | nndivre | |- ( ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) e. RR /\ k e. NN ) -> ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / k ) e. RR ) |
|
| 48 | 46 47 | sylan | |- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / k ) e. RR ) |
| 49 | 45 48 | eqeltrd | |- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( n e. NN |-> ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / n ) ) ` k ) e. RR ) |
| 50 | oveq2 | |- ( n = k -> ( ( abs ` A ) ^ n ) = ( ( abs ` A ) ^ k ) ) |
|
| 51 | eqid | |- ( n e. NN |-> ( ( abs ` A ) ^ n ) ) = ( n e. NN |-> ( ( abs ` A ) ^ n ) ) |
|
| 52 | ovex | |- ( ( abs ` A ) ^ k ) e. _V |
|
| 53 | 50 51 52 | fvmpt | |- ( k e. NN -> ( ( n e. NN |-> ( ( abs ` A ) ^ n ) ) ` k ) = ( ( abs ` A ) ^ k ) ) |
| 54 | 53 | adantl | |- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( n e. NN |-> ( ( abs ` A ) ^ n ) ) ` k ) = ( ( abs ` A ) ^ k ) ) |
| 55 | nnz | |- ( k e. NN -> k e. ZZ ) |
|
| 56 | rpexpcl | |- ( ( ( abs ` A ) e. RR+ /\ k e. ZZ ) -> ( ( abs ` A ) ^ k ) e. RR+ ) |
|
| 57 | 25 55 56 | syl2an | |- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( abs ` A ) ^ k ) e. RR+ ) |
| 58 | 54 57 | eqeltrd | |- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( n e. NN |-> ( ( abs ` A ) ^ n ) ) ` k ) e. RR+ ) |
| 59 | 58 | rpred | |- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( n e. NN |-> ( ( abs ` A ) ^ n ) ) ` k ) e. RR ) |
| 60 | nnrp | |- ( k e. NN -> k e. RR+ ) |
|
| 61 | rpmulcl | |- ( ( ( ( 1 / ( abs ` A ) ) - 1 ) e. RR+ /\ k e. RR+ ) -> ( ( ( 1 / ( abs ` A ) ) - 1 ) x. k ) e. RR+ ) |
|
| 62 | 33 60 61 | syl2an | |- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( ( 1 / ( abs ` A ) ) - 1 ) x. k ) e. RR+ ) |
| 63 | 62 | rpred | |- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( ( 1 / ( abs ` A ) ) - 1 ) x. k ) e. RR ) |
| 64 | peano2re | |- ( ( ( ( 1 / ( abs ` A ) ) - 1 ) x. k ) e. RR -> ( ( ( ( 1 / ( abs ` A ) ) - 1 ) x. k ) + 1 ) e. RR ) |
|
| 65 | 63 64 | syl | |- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( ( ( 1 / ( abs ` A ) ) - 1 ) x. k ) + 1 ) e. RR ) |
| 66 | rpexpcl | |- ( ( ( 1 / ( abs ` A ) ) e. RR+ /\ k e. ZZ ) -> ( ( 1 / ( abs ` A ) ) ^ k ) e. RR+ ) |
|
| 67 | 29 55 66 | syl2an | |- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( 1 / ( abs ` A ) ) ^ k ) e. RR+ ) |
| 68 | 67 | rpred | |- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( 1 / ( abs ` A ) ) ^ k ) e. RR ) |
| 69 | 63 | lep1d | |- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( ( 1 / ( abs ` A ) ) - 1 ) x. k ) <_ ( ( ( ( 1 / ( abs ` A ) ) - 1 ) x. k ) + 1 ) ) |
| 70 | 30 | adantr | |- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( 1 / ( abs ` A ) ) e. RR ) |
| 71 | 9 | adantl | |- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> k e. NN0 ) |
| 72 | 29 | rpge0d | |- ( ( ph /\ A =/= 0 ) -> 0 <_ ( 1 / ( abs ` A ) ) ) |
| 73 | 72 | adantr | |- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> 0 <_ ( 1 / ( abs ` A ) ) ) |
| 74 | bernneq2 | |- ( ( ( 1 / ( abs ` A ) ) e. RR /\ k e. NN0 /\ 0 <_ ( 1 / ( abs ` A ) ) ) -> ( ( ( ( 1 / ( abs ` A ) ) - 1 ) x. k ) + 1 ) <_ ( ( 1 / ( abs ` A ) ) ^ k ) ) |
|
| 75 | 70 71 73 74 | syl3anc | |- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( ( ( 1 / ( abs ` A ) ) - 1 ) x. k ) + 1 ) <_ ( ( 1 / ( abs ` A ) ) ^ k ) ) |
| 76 | 63 65 68 69 75 | letrd | |- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( ( 1 / ( abs ` A ) ) - 1 ) x. k ) <_ ( ( 1 / ( abs ` A ) ) ^ k ) ) |
| 77 | 25 | rpcnne0d | |- ( ( ph /\ A =/= 0 ) -> ( ( abs ` A ) e. CC /\ ( abs ` A ) =/= 0 ) ) |
| 78 | exprec | |- ( ( ( abs ` A ) e. CC /\ ( abs ` A ) =/= 0 /\ k e. ZZ ) -> ( ( 1 / ( abs ` A ) ) ^ k ) = ( 1 / ( ( abs ` A ) ^ k ) ) ) |
|
| 79 | 78 | 3expa | |- ( ( ( ( abs ` A ) e. CC /\ ( abs ` A ) =/= 0 ) /\ k e. ZZ ) -> ( ( 1 / ( abs ` A ) ) ^ k ) = ( 1 / ( ( abs ` A ) ^ k ) ) ) |
| 80 | 77 55 79 | syl2an | |- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( 1 / ( abs ` A ) ) ^ k ) = ( 1 / ( ( abs ` A ) ^ k ) ) ) |
| 81 | 76 80 | breqtrd | |- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( ( 1 / ( abs ` A ) ) - 1 ) x. k ) <_ ( 1 / ( ( abs ` A ) ^ k ) ) ) |
| 82 | 62 57 81 | lerec2d | |- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( abs ` A ) ^ k ) <_ ( 1 / ( ( ( 1 / ( abs ` A ) ) - 1 ) x. k ) ) ) |
| 83 | 33 | rpcnne0d | |- ( ( ph /\ A =/= 0 ) -> ( ( ( 1 / ( abs ` A ) ) - 1 ) e. CC /\ ( ( 1 / ( abs ` A ) ) - 1 ) =/= 0 ) ) |
| 84 | nncn | |- ( k e. NN -> k e. CC ) |
|
| 85 | nnne0 | |- ( k e. NN -> k =/= 0 ) |
|
| 86 | 84 85 | jca | |- ( k e. NN -> ( k e. CC /\ k =/= 0 ) ) |
| 87 | recdiv2 | |- ( ( ( ( ( 1 / ( abs ` A ) ) - 1 ) e. CC /\ ( ( 1 / ( abs ` A ) ) - 1 ) =/= 0 ) /\ ( k e. CC /\ k =/= 0 ) ) -> ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / k ) = ( 1 / ( ( ( 1 / ( abs ` A ) ) - 1 ) x. k ) ) ) |
|
| 88 | 83 86 87 | syl2an | |- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / k ) = ( 1 / ( ( ( 1 / ( abs ` A ) ) - 1 ) x. k ) ) ) |
| 89 | 82 88 | breqtrrd | |- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( abs ` A ) ^ k ) <_ ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / k ) ) |
| 90 | 89 54 45 | 3brtr4d | |- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( n e. NN |-> ( ( abs ` A ) ^ n ) ) ` k ) <_ ( ( n e. NN |-> ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / n ) ) ` k ) ) |
| 91 | 58 | rpge0d | |- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> 0 <_ ( ( n e. NN |-> ( ( abs ` A ) ^ n ) ) ` k ) ) |
| 92 | 3 22 37 40 49 59 90 91 | climsqz2 | |- ( ( ph /\ A =/= 0 ) -> ( n e. NN |-> ( ( abs ` A ) ^ n ) ) ~~> 0 ) |
| 93 | 1zzd | |- ( ph -> 1 e. ZZ ) |
|
| 94 | 6 | a1i | |- ( ph -> ( n e. NN0 |-> ( A ^ n ) ) e. _V ) |
| 95 | 39 | a1i | |- ( ph -> ( n e. NN |-> ( ( abs ` A ) ^ n ) ) e. _V ) |
| 96 | 9 | adantl | |- ( ( ph /\ k e. NN ) -> k e. NN0 ) |
| 97 | 96 13 | syl | |- ( ( ph /\ k e. NN ) -> ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) = ( A ^ k ) ) |
| 98 | expcl | |- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
|
| 99 | 1 9 98 | syl2an | |- ( ( ph /\ k e. NN ) -> ( A ^ k ) e. CC ) |
| 100 | 97 99 | eqeltrd | |- ( ( ph /\ k e. NN ) -> ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) e. CC ) |
| 101 | absexp | |- ( ( A e. CC /\ k e. NN0 ) -> ( abs ` ( A ^ k ) ) = ( ( abs ` A ) ^ k ) ) |
|
| 102 | 1 9 101 | syl2an | |- ( ( ph /\ k e. NN ) -> ( abs ` ( A ^ k ) ) = ( ( abs ` A ) ^ k ) ) |
| 103 | 97 | fveq2d | |- ( ( ph /\ k e. NN ) -> ( abs ` ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) ) = ( abs ` ( A ^ k ) ) ) |
| 104 | 53 | adantl | |- ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> ( ( abs ` A ) ^ n ) ) ` k ) = ( ( abs ` A ) ^ k ) ) |
| 105 | 102 103 104 | 3eqtr4rd | |- ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> ( ( abs ` A ) ^ n ) ) ` k ) = ( abs ` ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) ) ) |
| 106 | 3 93 94 95 100 105 | climabs0 | |- ( ph -> ( ( n e. NN0 |-> ( A ^ n ) ) ~~> 0 <-> ( n e. NN |-> ( ( abs ` A ) ^ n ) ) ~~> 0 ) ) |
| 107 | 106 | biimpar | |- ( ( ph /\ ( n e. NN |-> ( ( abs ` A ) ^ n ) ) ~~> 0 ) -> ( n e. NN0 |-> ( A ^ n ) ) ~~> 0 ) |
| 108 | 92 107 | syldan | |- ( ( ph /\ A =/= 0 ) -> ( n e. NN0 |-> ( A ^ n ) ) ~~> 0 ) |
| 109 | 21 108 | pm2.61dane | |- ( ph -> ( n e. NN0 |-> ( A ^ n ) ) ~~> 0 ) |